\qquad
\qquad

Math 302 Complex Calculus II - Homework - Solution

5
10
10

Please do not write anything inside the above boxes!
Show your work in reasonable detail. A correct answer without proper or too much reasoning may not get any credit.

Q-5) Here we want to prove a finer version of a result in the book.
Let R be an open, simply connected, non-empty proper subset of the complex plane. Fix a point $z_{0} \in R$. Define a collection of functions on R into the unit disk U as

$$
\mathcal{F}=\left\{f: R \rightarrow U \mid f \text { is analytic and one-to-one, } f\left(z_{0}\right)=0 \text { and } f^{\prime}\left(z_{0}\right)>0\right\} .
$$

Show by a direct proof, i.e. not using the non-emptiness of a similar set of the textbook, that \mathcal{F} is not empty.

Solution:

Fix a point a in the complement of R. Since R is simply connected and since $z-a$ is never zero, we can define a branch of logarithm on $z-a$ for all $z \in R$. Then define

$$
g(z)=\exp \left(\frac{1}{2} \log (z-a)\right)=\sqrt{z-a}, z \in R
$$

g is one-to-one and analytic on R since $\log (z-a)$ is.
g is an open mapping, z_{0} is an interior point of R, so $g(R)$ contains an open disk $D_{\delta}\left(g\left(z_{0}\right)\right)$ of radius δ centered at $g\left(z_{0}\right)$ for some $\delta>0$.

Since we fixed a branch of the square root function, $-g\left(z_{0}\right)$ is not achieved by g on R. Hence $-D_{\delta}\left(g\left(z_{0}\right)\right)$ does not meet $g(R)$.

Note that

$$
-D_{\delta}\left(g\left(z_{0}\right)\right)=D_{\delta}\left(-g\left(z_{0}\right)\right)=\left\{w \in \mathbb{C}| | w+g\left(z_{0}\right) \mid<\delta\right\} .
$$

For any $z \in R$, since $g(z) \notin-D_{\delta}\left(g\left(z_{0}\right)\right)$, we must have

$$
\left|g(z)+g\left(z_{0}\right)\right| \geq \delta ; \quad \text { in particular } \quad 2\left|g\left(z_{0}\right)\right| \geq \delta .
$$

Now define

$$
f(z)=\frac{\delta}{4} \frac{\left|g^{\prime}\left(z_{0}\right)\right|}{\left|g\left(z_{0}\right)\right|^{2}} \frac{g\left(z_{0}\right)}{g^{\prime}\left(z_{0}\right)} \frac{g(z)-g\left(z_{0}\right)}{g(z)+g\left(z_{0}\right)}, \quad \text { for } \quad z \in R
$$

By the above arguments, we know that f is analytic on R. We claim that $f \in \mathcal{F}$.
First, check that since g is one-to-one, so is f.
Clearly $f\left(z_{0}\right)=0$.
Also check directly that $f^{\prime}\left(z_{0}\right)=\frac{\delta}{8} \frac{\left|g^{\prime}\left(z_{0}\right)\right|}{\left|g\left(z_{0}\right)\right|^{2}}>0$.
Finally, recalling that $\left|g(z)+g\left(z_{0}\right)\right| \geq \delta$ and $\left|g\left(z_{0}\right)\right| \geq \delta / 2$, check that

$$
\begin{aligned}
\left|\frac{g(z)-g\left(z_{0}\right)}{g(z)+g\left(z_{0}\right)}\right| & =\left|1-\frac{2 g\left(z_{0}\right)}{g(z)+g\left(z_{0}\right)}\right| \\
& =\left|g\left(z_{0}\right)\right|\left|\frac{1}{g\left(z_{0}\right)}-\frac{2}{g(z)+g\left(z_{0}\right)}\right| \\
& \leq\left|g\left(z_{0}\right)\right|\left(\frac{1}{\left|g\left(z_{0}\right)\right|}+\frac{2}{\left|g(z)+g\left(z_{0}\right)\right|}\right) \\
& \leq\left|g\left(z_{0}\right)\right|\left(\frac{2}{\delta}+\frac{2}{\delta}\right) \\
& =\frac{4\left|g\left(z_{0}\right)\right|}{\delta} .
\end{aligned}
$$

It is now clear that $|f(z)| \leq 1$ for all $z \in R$ and that $f \in \mathcal{F}$.

