Due Date: December 26, 2011 Monday
Ali Sinan Sertöz

NAME: \qquad

STUDENT NO:

\qquad

Math 302 Complex Calculus II - Homework - Solution

6	7	8
10	10	10
10	10	10

Please do not write anything inside the above boxes!
Show your work in reasonable detail. A correct answer without proper or too much reasoning may not get any credit.

Q-6) Find a formula for $\Gamma\left(\frac{n}{2}\right)$, where n is a positive integer.

Solution:

Using the recursive formula $\Gamma(z+1)=z \Gamma(z)$ and induction, it can be easily shown that

$$
\Gamma\left(\frac{2 k+1}{2}\right)=\frac{1 \cdot 3 \cdots(2 k-1)}{2^{k}} \sqrt{\pi}
$$

and

$$
\Gamma\left(\frac{2 k}{2}\right)=(k-1)!,
$$

where k is a non-negative integer.

Q-7) Prove in detail and in your own words that

$$
\Gamma(z)=\lim _{n \rightarrow \infty} \int_{0}^{n} t^{z-1}\left(1-\frac{t}{n}\right)^{n} d t, \text { for } \operatorname{Re} z>0
$$

Solution:

Fix a complex number $z=x+i y$ such that $\operatorname{Re} z=x>0$.
Choose any $\epsilon>0 /$
Choose an integer N_{1} such that for all $n \geq N_{1},\left|\int_{n}^{\infty} t^{x-1} e^{-t} d t\right|<\epsilon / 2$. This is possible since the integral for the Gamma function converges for $x>0$.

Choose an integer N_{2} such that for all $n \geq N_{2}, \frac{e}{2 n} \Gamma(x+2)<\epsilon / 2$.
In the following calculations, we take $n \geq N=\max \left\{N_{1}, N_{2}\right\}$ and $0<t<n$.
From the Taylor expansion of $e^{-t / n}$ we find

$$
0 \leq e^{-t / n}-\left(1-\frac{t}{n}\right) \leq \frac{t^{2}}{2 n^{2}}
$$

For $a>b>0$, we recall that $a^{n}-b^{n}=(a-b)\left(a^{n-1}+a^{n-2} b+\cdots+b^{n-1}\right) \leq(a-b) n a^{n-1}$. Using this with $a=e^{-t / n}$ and $b=(1-t / n)$ together with the above inequality, we find

$$
0 \leq e^{-t}-\left(1-\frac{t}{n}\right)^{n} \leq\left[e^{-t / n}-\left(1-\frac{t}{n}\right)\right] n e^{(-t)+(t / n)} \leq \frac{e^{-t} t^{2}}{2 n} e^{t / n} \leq \frac{e^{-t} t^{2}}{2 n} e
$$

Finally, we have

$$
\begin{aligned}
\left|\Gamma(z)-\int_{0}^{n} e^{z-1}\left(1-\frac{t}{n}\right)^{n} d t\right| & \leq \int_{0}^{n} t^{x-1}\left|e^{-t}-\left(1-\frac{t}{n}\right)^{n}\right| d t+\int_{n}^{\infty} t^{x-1} e^{-t} d t \\
& <\int_{0}^{n} t^{x-1} \frac{e^{-t} t^{2}}{2 n} e d t+\epsilon / 2 \\
& =\frac{e}{2 n} \Gamma(x+2)+\epsilon / 2 \\
& <\epsilon / 2+\epsilon / 2+\epsilon
\end{aligned}
$$

which proves that

$$
\Gamma(z)=\lim _{n \rightarrow \infty} \int_{0}^{n} t^{z-1}\left(1-\frac{t}{n}\right)^{n} d t, \text { for } \operatorname{Re} z>0
$$

Q-8) Prove in detail and in your own words that $\sum_{p \text { prime }} \frac{1}{p}$ diverges.
Solution: We have the identity

$$
\zeta(z)=\frac{1}{\prod_{p: p r i m e}\left(1-\frac{1}{p^{z}}\right)} \text { for } \operatorname{Re} z>1
$$

We also know that: If $\sum_{k=1}^{\infty} z_{k}$ and $\sum_{k=1}^{\infty}\left|z_{k}\right|^{2}$ converge, then $\prod_{k=1}^{\infty}\left(1+z_{k}\right)$ converges. (This is an exercise from the book, and also was a midterm exam question.)

Since $\zeta(z)$ becomes infinite as z approaches 1, the infinite product $\prod_{p: p r i m e}\left(1-\frac{1}{p^{z}}\right)$ diverges to zero.
Take z_{k} as -1 times the k-th prime.
Since the infinite product diverges and $\sum\left|z_{k}\right|^{2}$ converges, we must have $\sum z_{k}$ diverge according to the above fact.

This proves that $\sum_{p \text { prime }} \frac{1}{p}$ diverges.

