\qquad

Math 302 Complex Analysis II - Makeup Exam - Solutions

1	2	3	4	5	TOTAL
20	20	20	20	20	100

Please do not write anything inside the above boxes!
Check that there are 5 questions on your exam booklet. Write your name on top of every page. Show your work in reasonable detail. A correct answer without proper or too much reasoning may not get any credit.

Q-1) Find the infinite sum $\sum_{n=0}^{\infty}\binom{2 n}{n} \frac{1}{9^{n}}$. Justify your steps.

Solution:

We first do some formal calculations and then justify them. Here C is a circle centered at the origin. To determine its radius is the key step in finding a justification for what we are doing.

$$
\begin{aligned}
\sum_{n=0}^{\infty}\binom{2 n}{n} \frac{1}{9^{n}} & =\sum_{n=0}^{\infty}\left[\frac{1}{2 \pi i} \int_{C} \frac{(1+z)^{2 n}}{z^{n+1}} d z\right] \frac{1}{9^{n}} \\
& =\frac{1}{2 \pi i} \int_{C} \sum_{n=0}^{\infty}\left[\frac{(1+z)^{2}}{9 z}\right]^{n} \frac{d z}{z} \\
& =\frac{1}{2 \pi i} \int_{C} \frac{1}{1-\frac{(1+z)^{2}}{9 z}} \frac{d z}{z} \\
& =\frac{1}{2 \pi i} \int_{C} \frac{9}{7 z-1-z^{2}} d z
\end{aligned}
$$

The last integral will be the sum of the residues of the integrand, lying inside C. The roots of $7 z-$ $1-z^{2}=0$ are $z_{1}=\frac{7-3 \sqrt{5}}{2} \approx 0.14$ and $z_{1}=\frac{7+3 \sqrt{5}}{2} \approx 6.8$. The radius of C is determined by the step where we interchange the infinite sum and the integral. This step is justified if

$$
\left|\frac{(1+z)^{2}}{9 z}\right|<1, \text { or if }|z|^{2}-7|z|+1<0
$$

The latter condition is satisfied if the radius of C is between $\left|z_{1}\right|$ and $\left|z_{2}\right|$. In this case the value of the integral is just the residue at z_{1}. Hence

$$
\sum_{n=0}^{\infty}\binom{2 n}{n} \frac{1}{9^{n}}=\operatorname{Res}\left(\frac{9}{7 z-1-z^{2}}, z=z_{1}\right)=\frac{3}{\sqrt{5}} \approx 1.34
$$

Q-2) Consider the integral $F(a, n))=\int_{I} \frac{e^{-z}}{(z+1)^{n}} d z$ where I is the line $z(t)=a+i t$ for $-\infty<t<\infty$. Here a is any real number, and n is any positive integer.

Evaluate $F(a, n)$. Justify your steps.

Solution:

First of all, we observe that the integral is not defined if $a=-a$. So assume that $a \neq 0$.
Let C_{R} be the right semicircle of radius $R>0$ centered at $z=a$, and let γ_{R} be the closed contour whose one side is C_{R} and the other side is the vertical line on $z=a$. Then

$$
\int_{a-i R}^{a+i R} \frac{e^{-z}}{(z+1)^{n}} d z+\int_{C_{R}} \frac{e^{-z}}{(z+1)^{n}} d z=\operatorname{Res}\left(\frac{e^{-z}}{(z+1)^{n}}, z=\text { pole inside } \gamma_{R}\right)
$$

As $R \rightarrow \infty$, the integral on C_{R} goes to zero, so

$$
\int_{I} \frac{e^{-z}}{(z+1)^{n}} d z=\operatorname{Res}\left(\frac{e^{-z}}{(z+1)^{n}}, z=\text { pole inside } \gamma_{R}\right)
$$

If $a>-1$, there are no poles inside γ_{R}. If $a<-1$, then $z=-1$ is the pole inside γ_{R}, and the residue there is $\frac{(-1)^{n-1} e}{(n-1)!}$. Finally, we can write

$$
F(a, n)= \begin{cases}0, & \text { if } a>-1 \\ \frac{(-1)^{n-1} e}{(n-1)!}, & \text { if } a<-1 \\ \text { not defined, }, & \text { if } a=-1\end{cases}
$$

Q-3) The cross-ratio of four complex numbers $z_{1}, z_{2}, z_{3}, z_{4}$, denoted by $\left(z_{1}, z_{2}, z_{3}, z_{4}\right)$, is the image of z_{4} under the bilinear transformation which maps z_{1}, z_{2}, z_{3} to $\infty, 0,1$ respectively.

Show that the cross-ratio of four points is invariant under bilinear transformations, i.e. if T is any bilinear transformation then $\left(z_{1}, z_{2}, z_{3}, z_{4}\right)=\left(T\left(z_{1}\right), T\left(z_{2}\right), T\left(z_{3}\right), T\left(z_{4}\right)\right)$.

Solution: Let S be the bilinear map which sends z_{1}, z_{2}, z_{3} into $\infty, 0,1$ respectively. Then by definition $S\left(z_{4}\right)=\left(z_{1}, z_{2}, z_{3}, z_{4}\right)$. Observe that $S \circ T^{-1}$ sends $T z_{1}, T z_{2}, T z_{3}$ into $\infty, 0,1$ respectively. Then $S \circ T^{-1}\left(T z_{4}\right)=\left(T\left(z_{1}\right), T\left(z_{2}\right), T\left(z_{3}\right), T\left(z_{4}\right)\right)$. But $S \circ T^{-1}\left(T z_{4}\right)=S\left(z_{4}\right)=\left(z_{1}, z_{2}, z_{3}, z_{4}\right)$, which is what we wanted to prove.

Q-4) Find a function $f(x, y)$ which is harmonic on $D=\{z \in \mathbb{C}| | z \mid<1\}$ and continuous on $\bar{D}=$ $\left\{z \in \mathbb{C}||z| \leq 1\}\right.$ such that $f(x, y)=x^{4}+x^{3}-x^{2}+x+1$ on $\partial D=\{z \in \mathbb{C}| | z \mid=1\}$.

Solution:

Let $u(x, y)=\operatorname{Re}(x+i y)^{4}=x^{4}-6 x^{2} y^{2}+y^{4}$, and $v(x, y)=\operatorname{Re}(x+i y)^{3}=x^{3}-3 x y^{2}$. Being real parts of analytic functions, these are harmonic functions. Also $w(x, y)=(7 / 4) x+(7 / 8)$ is clearly harmonic. The required function is found to be

$$
f(x, y)=\frac{1}{8} u(x, y)+\frac{1}{4} v(x, y)+w(x, y) .
$$

Q-5) Show that the infinite product $\prod_{n=1}^{\infty}\left(1-\frac{(-1)^{n}}{n^{2}+n+2012}\right)$ converges.

Solution:

The general theory tells us that if $\sum_{n=1}^{\infty}\left|z_{n}\right|$ converges, then $\prod_{n=1}^{\infty}\left(1+z_{n}\right)$ converges.
Here we have $z_{n}=\frac{(-1)^{n}}{n^{2}+n+2012}$ which satisfies the premises of the general theory, so the given infinite product converges.

