NAME:....

Date: 20 January 2012, Friday Time: 09:00-11:00 Ali Sinan Sertöz

STUDENT NO:

Math 302 Complex Analysis II – Makeup Exam – Solutions

1	2	3	4	5	TOTAL
20	20	20	20	20	100

Please do not write anything inside the above boxes!

Check that there are 5 questions on your exam booklet. Write your name on top of every page. Show your work in reasonable detail. A correct answer without proper or too much reasoning may not get any credit.

NAME:

Q-1) Find the infinite sum $\sum_{n=0}^{\infty} {\binom{2n}{n}} \frac{1}{9^n}$. Justify your steps.

Solution:

We first do some formal calculations and then justify them. Here C is a circle centered at the origin. To determine its radius is the key step in finding a justification for what we are doing.

$$\begin{split} \sum_{n=0}^{\infty} \binom{2n}{n} \frac{1}{9^n} &= \sum_{n=0}^{\infty} \left[\frac{1}{2\pi i} \int_C \frac{(1+z)^{2n}}{z^{n+1}} dz \right] \frac{1}{9^n} \\ &= \frac{1}{2\pi i} \int_C \sum_{n=0}^{\infty} \left[\frac{(1+z)^2}{9z} \right]^n \frac{dz}{z} \\ &= \frac{1}{2\pi i} \int_C \frac{1}{1 - \frac{(1+z)^2}{9z}} \frac{dz}{z} \\ &= \frac{1}{2\pi i} \int_C \frac{9}{7z - 1 - z^2} dz. \end{split}$$

The last integral will be the sum of the residues of the integrand, lying inside C. The roots of $7z - 1 - z^2 = 0$ are $z_1 = \frac{7 - 3\sqrt{5}}{2} \approx 0.14$ and $z_1 = \frac{7 + 3\sqrt{5}}{2} \approx 6.8$. The radius of C is determined by the step where we interchange the infinite sum and the integral. This step is justified if

$$\left|\frac{(1+z)^2}{9z}\right| < 1$$
, or if $|z|^2 - 7|z| + 1 < 0$.

The latter condition is satisfied if the radius of C is between $|z_1|$ and $|z_2|$. In this case the value of the integral is just the residue at z_1 . Hence

$$\sum_{n=0}^{\infty} \binom{2n}{n} \frac{1}{9^n} = \operatorname{Res}(\frac{9}{7z - 1 - z^2}, z = z_1) = \frac{3}{\sqrt{5}} \approx 1.34.$$

STUDENT NO:

Q-2) Consider the integral $F(a, n) = \int_{I} \frac{e^{-z}}{(z+1)^n} dz$ where *I* is the line z(t) = a + it for $-\infty < t < \infty$. Here *a* is any real number, and *n* is any positive integer.

Evaluate F(a, n). Justify your steps.

Solution:

First of all, we observe that the integral is not defined if a = -a. So assume that $a \neq 0$.

Let C_R be the right semicircle of radius R > 0 centered at z = a, and let γ_R be the closed contour whose one side is C_R and the other side is the vertical line on z = a. Then

$$\int_{a-iR}^{a+iR} \frac{e^{-z}}{(z+1)^n} \, dz + \int_{C_R} \frac{e^{-z}}{(z+1)^n} \, dz = \operatorname{Res}(\frac{e^{-z}}{(z+1)^n}, z = \operatorname{pole\ inside\ } \gamma_R).$$

As $R \to \infty$, the integral on C_R goes to zero, so

$$\int_{I} \frac{e^{-z}}{(z+1)^n} dz = \operatorname{Res}(\frac{e^{-z}}{(z+1)^n}, z = \text{pole inside } \gamma_R).$$

If a > -1, there are no poles inside γ_R . If a < -1, then z = -1 is the pole inside γ_R , and the residue there is $\frac{(-1)^{n-1}e}{(n-1)!}$. Finally, we can write

$$F(a,n) = \begin{cases} 0, & \text{if } a > -1, \\ \frac{(-1)^{n-1}e}{(n-1)!}, & \text{if } a < -1, \\ \text{not defined}, & \text{if } a = -1. \end{cases}$$

STUDENT NO:

Q-3) The cross-ratio of four complex numbers z_1, z_2, z_3, z_4 , denoted by (z_1, z_2, z_3, z_4) , is the image of z_4 under the bilinear transformation which maps z_1, z_2, z_3 to $\infty, 0, 1$ respectively.

Show that the cross-ratio of four points is invariant under bilinear transformations, i.e. if T is any bilinear transformation then $(z_1, z_2, z_3, z_4) = (T(z_1), T(z_2), T(z_3), T(z_4))$.

Solution: Let S be the bilinear map which sends z_1, z_2, z_3 into $\infty, 0, 1$ respectively. Then by definition $S(z_4) = (z_1, z_2, z_3, z_4)$. Observe that $S \circ T^{-1}$ sends Tz_1, Tz_2, Tz_3 into $\infty, 0, 1$ respectively. Then $S \circ T^{-1}(Tz_4) = (T(z_1), T(z_2), T(z_3), T(z_4))$. But $S \circ T^{-1}(Tz_4) = S(z_4) = (z_1, z_2, z_3, z_4)$, which is what we wanted to prove.

NAME:

STUDENT NO:

Q-4) Find a function f(x, y) which is harmonic on $D = \{z \in \mathbb{C} \mid |z| < 1\}$ and continuous on $\overline{D} = \{z \in \mathbb{C} \mid |z| \le 1\}$ such that $f(x, y) = x^4 + x^3 - x^2 + x + 1$ on $\partial D = \{z \in \mathbb{C} \mid |z| = 1\}$.

Solution:

Let $u(x, y) = \text{Re}(x + iy)^4 = x^4 - 6x^2y^2 + y^4$, and $v(x, y) = \text{Re}(x + iy)^3 = x^3 - 3xy^2$. Being real parts of analytic functions, these are harmonic functions. Also w(x, y) = (7/4)x + (7/8) is clearly harmonic. The required function is found to be

$$f(x,y) = \frac{1}{8}u(x,y) + \frac{1}{4}v(x,y) + w(x,y).$$

NAME:

STUDENT NO:

Q-5) Show that the infinite product
$$\prod_{n=1}^{\infty} \left(1 - \frac{(-1)^n}{n^2 + n + 2012} \right)$$
 converges.

Solution:

The general theory tells us that if $\sum_{n=1}^{\infty} |z_n|$ converges, then $\prod_{n=1}^{\infty} (1+z_n)$ converges.

Here we have $z_n = \frac{(-1)^n}{n^2 + n + 2012}$ which satisfies the premises of the general theory, so the given infinite product converges.