\qquad

Math 302 Complex Analysis II - Midterm Exam 2 - Solutions

1	2	3	4	5	TOTAL
20	20	20	20	20	100

Please do not write anything inside the above boxes!
Check that there are 5 questions on your exam booklet. Write your name on top of every page. Show your work in reasonable detail. A correct answer without proper reasoning may not get any credit.

Q-1) Show that every non-constant meromorphic function on \mathbb{C} is the ratio of two entire functions.
Solution: (This is solved in class.)
Let $\phi(z)$ be a meromorphic function whose poles are $\lambda_{1}, \lambda_{2}, \ldots$ repeated according to order. In other words, if z_{0} is a pole of order 3 , then z_{0}, z_{0}, z_{0} is in the list. If the set of poles is finite, say $\lambda_{1}, \ldots, \lambda_{n}$, then consider the entire function $f(z)=\left(z-\lambda_{1}\right) \cdots\left(z-\lambda_{n}\right)$.

If the set of poles is infinite, since ϕ is non-constant, the set of poles has no accumulation point and hence diverges to infinity. According to Weierstrass Theorem (Theorem 17.7 on page 219, Second Edition) there is an entire function f vanishing exactly at the points $\lambda_{1}, \lambda_{2}, \ldots$.

Now that we have an entire function f vanishing on the poles of ϕ to multiplicity equal to the order of the pole, the function $g(z)=f(z) \phi(z)$ is an entire function vanishing on the zeros of ϕ to the same order as ϕ.

Then $\phi(z)=\frac{g(z)}{f(z)}$ as claimed.

Q-2) Show that if $\sum_{k=1}^{\infty} z_{k}$ and $\sum_{k=1}^{\infty}\left|z_{k}\right|^{2}$ converge, then $\prod_{k=1}^{\infty}\left(1+z_{k}\right)$ converges.
Solution: (This is Exercise 3 on page 226, solution on page 286, Second Edition.)
The main result we use from complex analysis is that the convergence of $\prod_{k=1}^{\infty}\left(1+z_{k}\right)$ is equivalent to the convergence of $\sum_{k=1}^{\infty} \log \left(1+z_{k}\right)$. Therefore we will try to show the convergence of this infinite sum.
Since $\sum_{k=1}^{\infty} z_{k}$ converges, $\left|z_{k}\right| \leq 1 / 2$ for all large k. So for all large k we have

$$
\begin{aligned}
\left|\log \left(1+z_{k}\right)-z_{k}\right| & =\left|-\frac{z_{k}^{2}}{2}-\frac{z_{k}^{3}}{3}-\cdots\right| \\
& \leq\left|z_{k}\right|^{2}\left(\frac{1}{2}+\frac{\left|z_{k}\right|}{3}+\cdots\right) \\
& \leq\left|z_{k}\right|^{2}\left(\frac{1}{2}+\frac{1}{2 \cdot 3}+\frac{1}{2^{2} \cdot 4}+\cdots\right) \\
& <\left|z_{k}\right|^{2}\left(\frac{1}{2}+\frac{1}{2^{2}}+\cdots\right) \\
& =\left|z_{k}\right|^{2}
\end{aligned}
$$

By direct comparison from Calculus, $\sum_{k=1}^{\infty}\left(\log \left(1+z_{k}\right)-z_{k}\right)$ converges absolutely, since $\sum_{k=1}^{\infty}\left|z_{k}\right|^{2}$ converges.

Finally, as the difference of two convergent series

$$
\sum_{k=1}^{\infty} \log \left(1+z_{k}\right)=\sum_{k=1}^{\infty}\left(\log \left(1+z_{k}\right)-z_{k}\right)-\sum_{k=1}^{\infty} z_{k}
$$

converges, which is what we wanted to show.

Q-3) Show that $f(z)=\prod_{k=0}^{\infty}\left(\frac{2(k-z)+1}{2 k+1}\right) e^{(2 z) /(2 k+1)}$ is an entire function and determine all the solutions of $f(z)=0$.

Solution: (The solution is given in the Note immediately after Weierstrass Theorem on page 219.) Let $\lambda_{k}=k+\frac{1}{2}$. Then we observe that $\sum_{k=0}^{\infty} \frac{1}{\lambda_{k}}$ diverges but $\sum_{k=0}^{\infty} \frac{1}{\lambda_{k}^{2}}$ converges. So we can use

$$
E_{k}(z)=\exp \left(\frac{z}{k+1 / 2}\right), \text { for } k=0,1, \ldots
$$

can be used as the convergence factor in Weierstrass product. Hence

$$
f(z)=\prod_{k=0}^{\infty}\left(1-\frac{z}{\lambda_{k}}\right) E_{k}(z)=\prod_{k=0}^{\infty}\left(\frac{2 k-1-2 z}{2 k+1}\right) e^{(2 z) /(2 k+1)}
$$

is an entire function whose zero set is precisely the set of all λ_{k} for $k \geq 0$.

Q-4) Find a function $f(x, y)$ which is harmonic on $D=\{z \in \mathbb{C}| | z \mid<1\}$ and continuous on $\bar{D}=$ $\left\{z \in \mathbb{C}||z| \leq 1\}\right.$ such that $f(x, y)=x^{3}+x$ on $\partial D=\{z \in \mathbb{C}| | z \mid=1\}$.

Solution: (This is a simplified version of Example i on page 207.)
Let u be the real part of z^{3}. Then $u=x^{3}-3 x y^{2}$ and is harmonic everywhere. Restricting u to ∂D we find $\left.u\right|_{\partial D}=4 x^{3}-3 x$. We try to make this equal to f.

$$
\left.f(x, y)\right|_{\partial D}=x^{3}+x=\left.\frac{1}{4} u\right|_{\partial D}+\frac{7}{4} x .
$$

So we set

$$
f(x, y)=\frac{1}{4} u+\frac{7}{4} x=\frac{1}{4} x^{3}-\frac{3}{4} x y^{2}+\frac{7}{4} x .
$$

Q-5) Show that $\sum_{n=0}^{\infty} z^{n!}$ diverges at every point on the unit circle $|z|=1$.
Postmortem note: The problem was intended to ask to show that $|z|=1$ is a natural boundary. With the given wording, the problem became totally trivial. I will accept the trivial solution! What follows is the solution to the intended question.

Solution: (This is solved in class. It also follows directly from the statement of Theorem 18.5 on page 231.)

Let ω be a k-th root of unity. Then $\omega^{n!}=1$ for every $n \geq k$, so the infinite sum consists of infinitely many ones and diverges. Since the k-th roots of unity for $k=1,2, \ldots$ are dense on the unit circle, the series cannot be analytic on any open set containing any arc of the circle. Hence $|z|=1$ is a natural boundary for the series.

Also note that from Theorem 18.5, $n_{k}=k$! and $\liminf _{k \rightarrow \infty} \frac{n_{k+1}}{n_{k}}=\infty>1$, so the series has its circle of convergence as a natural boundary. The circle of convergence, from Calculus, is $R=1$.

