\qquad

Math 302 Complex Analysis II - Final Exam - Solutions

1	2	3	4	5	TOTAL
20	20	20	20	20	100

Please do not write anything inside the above boxes!
Check that there are 5 questions on your exam booklet. Write your name on top of every page. Show your work in reasonable detail. A correct answer without proper or too much reasoning may not get any credit.

Use the following at your own risk.

$$
\begin{aligned}
\tan z & =\sum_{k=1}^{\infty} \frac{\left|B_{2 k}\right| 2^{2 k}\left(2^{2 k}-1\right)}{(2 k)!} z^{2 k-1},|z|<\pi / 2 . \\
\cot z & =\frac{1}{z}-\sum_{k=1}^{\infty} \frac{4^{k}\left|B_{2 k}\right|}{(2 k)!} z^{2 k-1}, 0<|z|<\pi . \\
\sec z & =\sum_{k=0}^{\infty}(-1)^{k} \frac{E_{2 k}}{(2 k)!} z^{2 k},|z|<\pi / 2 . \\
\operatorname{cosec} z & =\frac{1}{z}+\sum_{k=1}^{\infty} \frac{\left(2^{2 k}-2\right)\left|B_{2 k}\right|}{(2 k)!} z^{2 k-1}, 0<|z|<\pi . \\
B_{0}=1, B_{1}=-\frac{1}{2}, B_{2} & =\frac{1}{6}, B_{3}=0, B_{4}=-\frac{1}{30}, B_{5}=0, B_{6}=\frac{1}{42}, B_{7}=0, B_{8}=-\frac{1}{30} . \\
E_{0}=1, E_{1}=0, E_{2} & =-1, E_{3}=0, E_{4}=5, E_{5}=0, E_{6}=-61, E_{7}=0, E_{8}=1385 .
\end{aligned}
$$

Q-1) Find the value of the following sum and write its exact value in the space provided. No partials!

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{4}}=
$$

Solution:

$$
\begin{aligned}
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{4}} & =-\frac{1}{2} \operatorname{Res}\left(\frac{\pi \operatorname{cosec} \pi z}{z^{4}} ; z=0\right) \\
& =-\frac{1}{2} \frac{\left(2^{4}-2\right)}{4!}\left|B_{4}\right| \pi^{4} \\
& =-\frac{7 \pi^{4}}{720}
\end{aligned}
$$

Q-2) Evaluate the integral $\int_{351-i \infty}^{351+i \infty} \frac{2011^{z}}{(z+13)^{17}} d z$, where the principal branch of \log is used in 2011^{z}.

Solution:

Let $f(z)=2011^{z}$. Then $\int_{351-i \infty}^{351+i \infty} \frac{f(z)}{(z+13)^{17}} d z=2 \pi i \operatorname{Res}\left(\frac{f(z)}{(z+13)^{17}} ; z=-13\right)=2 \pi i \frac{f^{(16)}(-13)}{16!}$.
(For an explanation, see the first example on chapter 12.)
Since $f^{(16)}(-13)=(\log 2011)^{16} 2011^{-13}$, the answer is $2 \pi i \frac{(\log 2011)^{16} 2011^{-13}}{16!} \approx 4.2 i \times 10^{-42}$.

Q-3) Let D be the unit disc around the origin. Find explicitly a function $f(x, y)$ such that f is harmonic on D and $\left.f\right|_{\partial D}=x^{4}$. Can we arrange it so that $f(0,0)=1$? Explain why or how.

Solution:

Let $u(x, y)=\operatorname{Re} z^{4}=x^{4}-6 x^{2} y^{2}+y^{4}$. Being the real part of an analytic function, $u(x, y)$ is harmonic on D.

On the unit circle we have $\left.u\right|_{\partial D}=8 x^{4}-8 x^{2}+1$.
We now have to find a harmonic function on D which restricts to x^{2} on ∂D. For this let $v(x, y)=$ $\operatorname{Re} z^{2}=x^{2}-y^{2}$ which is harmonic being the real part of a holomorphic function.

On the unit circle we have $\left.v\right|_{\partial D}=2 x^{2}-1$. Hence $x^{2}=\left.\frac{1}{2} v\right|_{\partial D}+\frac{1}{2}$. Set $g(x, y)=\frac{1}{2} v(x, y)+\frac{1}{2}$.
Returning to x^{4}, we observe that $x^{4}=\left.\frac{1}{8} u\right|_{\partial D}+\left.g\right|_{\partial D}-\frac{1}{8}$.
Hence we can take $f(x, y)=\frac{1}{8} x^{4}-\frac{3}{4} x^{2} y^{2}+\frac{1}{8} y^{4}+\frac{1}{2} x^{2}-\frac{1}{2} y^{2}+\frac{3}{8}$.
The general theory gives this as the unique function satisfying the requirements. Since $f(0,0)=3 / 8$, it cannot be changed.

Q-4) Show that $f(z)=e^{z}-z$ has infinitely many zeros and that each zero is simple.

Solution:

Since $|f(z)| \leq e^{|z|^{2}}$ for large z, it is of finite order. If it has finitely many zeros, then it is of the form $Q(z) e^{P(z)}$ where $Q(z)$ and $P(z)$ are polynomials. We then have

$$
e^{z-P(z)}-z e^{-P(z)}=Q(z)
$$

But this is absurd since the LHS is clearly not a polynomial. Hence f must have infinitely many zeros. Let α be a root of $f(z)=0$. $f^{\prime}(\alpha)=e^{\alpha}-1=0$ holds only when $\alpha=0$ but 0 is not a root itself. So all roots must be simple.

Another way to see that the above equality is absurd is to check by induction that the n-th derivative of the LHS is of the form

$$
e^{-P(z)}\left(R(z) e^{z}+S(z)\right)
$$

where $R(z)$ and $S(z)$ are polynomials. When n is larger than the degree of $Q(z)$, this expression must be identically equal to zero. This forces e^{z} to be a rational function which is a contradiction. (A non-constant rational function has zeros and poles whereas e^{z} has none!)

Q-5) Recall that $\Gamma(z)=\int_{0}^{\infty} e^{-t} t^{z-1} d t$ for $\operatorname{Re} z>0$. Choose any two real numbers $0<x_{0}<x_{1}$. Show that $|\Gamma(z)| \leq \Gamma\left(x_{0}\right)+\Gamma\left(x_{1}\right)$ for all z with $x_{0} \leq \operatorname{Re} z \leq x_{1}$.

Solution:

The proof is easy and can be given by the following self explanatory sequence of inequalities.

$$
\begin{aligned}
|\Gamma(z)| & =\left|\int_{0}^{\infty} e^{-t} t^{z-1} d t\right| \\
& \leq \int_{0}^{\infty} e^{-t} t^{x-1} d t \\
& =\int_{0}^{1} e^{-t} t^{x-1} d t+\int_{1}^{\infty} e^{-t} t^{x-1} d t \\
& \leq \int_{0}^{1} e^{-t} t^{x_{0}-1} d t+\int_{1}^{\infty} e^{-t} t^{x_{1}-1} d t \\
& \leq \Gamma\left(x_{0}\right)+\Gamma\left(x_{1}\right) .
\end{aligned}
$$

