\qquad

Math 302 Complex Analysis II - Homework 1 - Solutions

1	2	TOTAL
10	10	20

Please do not write anything inside the above boxes!
Check that there are 2 questions on your booklet. Write your name on top of every page. Show your work in reasonable detail. A correct answer without proper or too much reasoning may not get any credit.

Q-1) Let $f: U \rightarrow \mathbb{C}$ be a complex valued function of the form $f(z)=u(x, y)+i v(x, y)$, where U is an open region in \mathbb{C}. We know that if $f^{\prime}(z)$ exists at every point $z \in U$, then the Cauchy-Riemann equations $u_{x}=v_{y}$ and $u_{y}=-v_{x}$ hold at every point of U.

What can you say about the converse of this fact?

Solution:

It is well known that Cauchy-Riemann equations alone do not imply complex differentiability. We need extra conditions.

Let $f(z)=u(x, y)+i v(x, y)$ where u and v are C^{1} at $z_{0}=x_{0}+i y_{0}$. We will show that under this assumption the Cauchy-Riemann equations suffice for the existence of $f^{\prime}\left(z_{0}\right)$.

Define:
$\Delta f=f\left(z_{0}+\Delta z\right)-f\left(z_{0}\right)$, where $\Delta z=\Delta x+i \Delta y$.
$\Delta u=u\left(x_{0}+\Delta x, y_{0}+\Delta y\right)-u\left(x_{0}, y_{0}\right)$
$\Delta v=v\left(x_{0}+\Delta x, y_{0}+\Delta y\right)-v\left(x_{0}, y_{0}\right)$
Clearly, we have $\Delta f=\Delta u+i \Delta v$.
The increment theorem for C^{1} functions gives:
$\Delta u=u_{x}\left(x_{0}, y_{0}\right) \Delta x+u_{y}\left(x_{0}, y_{0}\right) \Delta y+\epsilon_{1} \Delta x+\epsilon_{2} \Delta y$ and
$\Delta v=v_{x}\left(x_{0}, y_{0}\right) \Delta x+v_{y}\left(x_{0}, y_{0}\right) \Delta y+\epsilon_{3} \Delta x+\epsilon_{4} \Delta y$ where
$\epsilon_{k} \rightarrow 0$ as $\Delta x, \Delta y \rightarrow 0$.
Using Cauchy-Riemann equations we can rewrite Δu and Δv as:
$\Delta u=u_{x}\left(x_{0}, y_{0}\right) \Delta x-v_{x}\left(x_{0}, y_{0}\right) \Delta y+\epsilon_{1} \Delta x+\epsilon_{2} \Delta y$,
$\Delta v=v_{x}\left(x_{0}, y_{0}\right) \Delta x+u_{x}\left(x_{0}, y_{0}\right) \Delta y+\epsilon_{3} \Delta x+\epsilon_{4} \Delta y$.
Finally we see that $\Delta f=\Delta u+i \Delta v=\left[u_{x}\left(x_{0}, y_{0}\right)+i v\left(x_{0}, y_{0}\right)\right] \Delta z+E$, where $E=\epsilon_{1} \Delta x+\epsilon_{2} \Delta y+$ $i\left(\epsilon_{3} \Delta x+\epsilon_{4} \Delta y\right)$. Since $|\Delta x / \Delta z|<1$ and $|\Delta y / \Delta z|<1$, we see that $E / \Delta z \rightarrow 0$ as $\Delta z \rightarrow 0$. Hence

$$
\lim _{\Delta z \rightarrow 0} \frac{\Delta f}{\Delta z}=u_{x}+i v_{x}
$$

Q-2) Find the Laurent expansion of $\operatorname{cosec} z$ around $z=0$.

Solution:

We use Euler's identity $\frac{w}{e^{w}-1}=\sum_{n=0}^{\infty} \frac{B_{n}}{n!} w^{n}$ as follows:

$$
\begin{aligned}
\operatorname{cosec} z & =\frac{2 i}{e^{i z}-e^{-i z}}=\frac{2 i e^{i z}}{e^{2 i z}-1} \\
& =2 i\left(\frac{e^{i z}+1-1}{\left(e^{i z}+1\right)\left(e^{i z}-1\right)}\right) \\
& =2 i\left(\frac{1}{e^{i z}-1}-\frac{1}{e^{2 i z}-1}\right) \\
& =2 i\left(\frac{1}{i z} \cdot \frac{i z}{e^{i z}-1}-\frac{1}{2 i z} \cdot \frac{2 i z}{e^{2 i z}-1}\right) \\
& =\frac{2}{z} \sum_{n=0}^{\infty} \frac{B_{n}}{n!}(i z)^{n}-\frac{1}{z} \sum_{n=0}^{\infty} \frac{B_{n}}{n!}(2 i z)^{n} \\
& =\sum_{n=0}^{\infty} \frac{B_{2 n}}{(2 n)!}\left(2-2^{2 n}\right)(-1)^{n} z^{2 n-1} \\
& =\frac{1}{z}+\sum_{n=0}^{\infty} \frac{\left(2^{2 n}-2\right)\left|B_{2 n}\right|}{(2 n)!} z^{2 n-1}, 0<|z|<\pi
\end{aligned}
$$

where the radius of convergence can easily be determined by considering the next singularity of $\operatorname{cosec} z$.

