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Please do not write anything inside the above boxes!

Check that there are 2 questions on your booklet. Write your name on top of every page. Show your work in
reasonable detail. A correct answer without proper or too much reasoning may not get any credit.
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Q-1) Let f : U → C be a complex valued function of the form f(z) = u(x, y) + iv(x, y), where U is
an open region in C. We know that if f ′(z) exists at every point z ∈ U , then the Cauchy-Riemann
equations ux = vy and uy = −vx hold at every point of U .

What can you say about the converse of this fact?

Solution:

It is well known that Cauchy-Riemann equations alone do not imply complex differentiability. We
need extra conditions.

Let f(z) = u(x, y) + iv(x, y) where u and v are C1 at z0 = x0 + iy0. We will show that under this
assumption the Cauchy-Riemann equations suffice for the existence of f ′(z0).

Define:
∆f = f(z0 +∆z)− f(z0), where ∆z = ∆x+ i∆y.
∆u = u(x0 +∆x, y0 +∆y)− u(x0, y0)
∆v = v(x0 +∆x, y0 +∆y)− v(x0, y0)
Clearly, we have ∆f = ∆u+ i∆v.

The increment theorem for C1 functions gives:
∆u = ux(x0, y0)∆x+ uy(x0, y0)∆y + ϵ1∆x+ ϵ2∆y and
∆v = vx(x0, y0)∆x+ vy(x0, y0)∆y + ϵ3∆x+ ϵ4∆y where
ϵk → 0 as ∆x,∆y → 0.

Using Cauchy-Riemann equations we can rewrite ∆u and ∆v as:
∆u = ux(x0, y0)∆x− vx(x0, y0)∆y + ϵ1∆x+ ϵ2∆y,
∆v = vx(x0, y0)∆x+ ux(x0, y0)∆y + ϵ3∆x+ ϵ4∆y.

Finally we see that ∆f = ∆u+ i∆v = [ux(x0, y0) + iv(x0, y0)]∆z+E, where E = ϵ1∆x+ ϵ2∆y+
i(ϵ3∆x+ ϵ4∆y). Since |∆x/∆z| < 1 and |∆y/∆z| < 1, we see that E/∆z → 0 as ∆z → 0. Hence

lim
∆z→0

∆f

∆z
= ux + ivx.
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Q-2) Find the Laurent expansion of cosecz around z = 0.

Solution:

We use Euler’s identity
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where the radius of convergence can easily be determined by considering the next singularity of
cosec z.


