\qquad

Math 302 Complex Analysis II - Homework 2

1	2	TOTAL
10	10	20

Please do not write anything inside the above boxes!
Check that there are 2 questions on your booklet. Write your name on top of every page. Show your work in reasonable detail. A correct answer without proper or too much reasoning may not get any credit.

Q-1) Discuss the convergence of $\sum_{n=0}^{\infty}\binom{2 n+1}{n} x^{n}$, where x is a real number. Find the sum when it exists.

Solution:

Let $a_{n}(x)=\binom{2 n+1}{n} x^{n}$. The ratio test gives

$$
\left|\frac{a_{n+1}(x)}{a_{n}(x)}\right|=\frac{4 n+6}{n+2}|x| \rightarrow 4|x| \text { as } n \rightarrow \infty
$$

Therefore the series converges absolutely for $|x|<1 / 4$. To check convergence for $x=1 / 4$ we use Raabe's test.

$$
\lim _{n \rightarrow \infty} n\left(1-\frac{a_{n+1}(1 / 4)}{a_{n}(1 / 4)}\right)=\lim _{n \rightarrow \infty} \frac{2 n}{4 n+8}=\frac{1}{2}<1,
$$

so the series diverges for $x=1 / 4$.
Next we check convergence at $x=-1 / 4$. In this case $a_{n}(-1 / 4)=(-1)^{n} a_{n}(1 / 4)$. Check that

$$
\frac{a_{n+1}(1 / 4)}{a_{n}(1 / 4)}=\frac{2 n+3}{2 n+4}<1
$$

so

$$
a_{n+1}(1 / 4)<a_{n}(1 / 4), n=0,1, \ldots
$$

and thus $a_{n}(1 / 4)$ strictly decreases as $n \rightarrow \infty$.
To show that $a_{n}(1 / 4) \rightarrow 0$ as $n \rightarrow \infty$, we use Stirling's theorem which says that

$$
\lim _{n \rightarrow \infty} \frac{n!e^{n}}{\sqrt{2 \pi} n^{n} n^{1 / 2}}=1
$$

Let $S(n)=\frac{n!e^{n}}{\sqrt{2 \pi} n^{n} n^{1 / 2}}$. Then $n!=S(n)\left[\frac{\sqrt{2 \pi} n^{n} n^{1 / 2}}{e^{n}}\right]$. We use this in checking the behavior of $a_{n}(1 / 4)$ as $n \rightarrow \infty$.

$$
\begin{aligned}
a_{n}(1 / 4) & =\frac{(2 n+1)!}{n!(n+1)!} \frac{1}{4^{n}} \\
& =\frac{S(2 n+1)}{S(n) S(n+1)}\left[\sqrt{\frac{2}{\pi}}\left(1+\frac{1 / 2}{n}\right)^{n}\left(1-\frac{1 / 2}{n+1}\right)^{n+1}\left(2-\frac{1}{n+1}\right)^{1 / 2}\right]\left(\frac{1}{n}\right)^{1 / 2}
\end{aligned}
$$

which shows that $\lim _{n \rightarrow \infty} a_{n}(1 / 4)=0$. We then conclude that the series also converges for $x=-1 / 4$ by the alternating series test.

Hence the interval of convergence of the series is $-\frac{1}{4} \leq x<\frac{1}{4}$.
To calculate the series, we start with the usual observation that for any $R>0$,

$$
\binom{2 n+1}{n}=\frac{1}{2 \pi i} \int_{|z|=R} \frac{(z+1)^{2 n+1}}{z^{n+1}} d z .
$$

Then

$$
\begin{aligned}
\sum_{n=0}^{\infty}\binom{2 n+1}{n} x^{n} & =\frac{1}{2 \pi i} \sum_{n=0}^{\infty} \int_{|z|=R} \frac{(z+1)^{2 n+1} x^{n}}{z^{n+1}} d z \\
& =\frac{1}{2 \pi i} \sum_{n=0}^{\infty} \int_{|z|=R}\left[\frac{(1+z)^{2} x}{z}\right]^{n} \frac{1+z}{z} d z \\
& =\frac{1}{2 \pi i} \int_{|z|=R} \sum_{n=0}^{\infty}\left[\frac{(1+z)^{2} x}{z}\right]^{n} \frac{1+z}{z} d z \\
& =\frac{1}{2 \pi i} \int_{|z|=R} \frac{1}{1-\left[\frac{(1+z)^{2} x}{z}\right]} \frac{1+z}{z} d z \\
& =\frac{1}{2 \pi i} \int_{|z|=R} \frac{z+1}{z-(1+z)^{2} x} d z
\end{aligned}
$$

The change of infinite sum and integration is justified when the convergence of the infinite sum is uniform on the given circle. We check that for $|z|=1$,

$$
\left|\frac{(1+z)^{2} x}{z}\right| \leq 4|x|<1 \text { when }|x|<\frac{1}{4}
$$

so we can take $R=1$ and $|x|<1 / 4$.
Now we evaluate the integral using residue theory. The roots of $z-(1+z)^{2} x=0$ are

$$
c_{1}=\frac{1-2 x-\sqrt{1-4 x}}{2 x} \text { and } c_{2}=\frac{1-2 x+\sqrt{1-4 x}}{2 x}
$$

Check that $0<c_{1}<1<c_{2}$. We need the residue at c_{1} since it is the only pole inside the unit circle.

$$
\operatorname{Res}\left(\frac{(1+z)^{2} x}{z}, c_{1}\right)=\frac{1-\sqrt{1-4 x}}{2 x \sqrt{1-4 x}} .
$$

Hence we find

$$
\sum_{n=0}^{\infty}\binom{2 n+1}{n} x^{n}=\frac{1-\sqrt{1-4 x}}{2 x \sqrt{1-4 x}} \text { for }-1 / 4 \leq x<1 / 4
$$

where the equality of x to $-1 / 4$ is given by Abel's theorem. Notice that the formula makes sense when $x=0$ also, since

$$
\frac{1-\sqrt{1-4 x}}{2 x}=1+x+2 x^{2}+5 x^{3}+\cdots \text { around } x=0 .
$$

Algebraically speaking,

$$
\frac{1-\sqrt{1-4 x}}{2 x}=\frac{1-\sqrt{1-4 x}}{2 x} \cdot \frac{1+\sqrt{1-4 x}}{1+\sqrt{1-4 x}}=\frac{2}{\sqrt{1-4 x}(1+\sqrt{1-4 x})}
$$

The power of this summation formula lies in the fact that the convergence is extremely slow as $|x|$ is close to $1 / 4$. For example when $x=-1 / 4$, the formula gives the sum as $0.5857 \ldots$ but a direct summation by computer fails to find the second digit after the decimal point even after $n=17,000$. In fact the third digit is not yet stabilized even after $5,000,000$ iterations.

Q-2) Find the sum of $\sum_{n=0}^{\infty} \frac{1}{n^{4}+1}$. In general describe how to find $\sum_{n=0}^{\infty} \frac{1}{n^{2 k}+1}$, where k is a positive integer.

Solution:

$$
\sum_{n=0}^{\infty} \frac{1}{n^{2 k}+1}=-\frac{1}{2} \sum_{j=0}^{2 k} \operatorname{Res}\left(\frac{\pi \cot \pi z}{1+z^{2 k}}, z_{j}\right)
$$

where $z_{0}=0$ and $z_{1}, \ldots, z_{2 k}$ are the roots of $1+z^{2 k}=0$. In particular

$$
\sum_{n=0}^{\infty} \frac{1}{n^{4}+1}=-\frac{1}{2} \sum_{j=0}^{4} \operatorname{Res}\left(\frac{\pi \cot \pi z}{1+z^{4}}, z_{j}\right)=0.5784 \ldots
$$

