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Math 302 Complex Analysis II – Homework 2
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Please do not write anything inside the above boxes!

Check that there are 2 questions on your booklet. Write your name on top of every page. Show your work in
reasonable detail. A correct answer without proper or too much reasoning may not get any credit.



NAME: STUDENT NO:

Q-1) Discuss the convergence of
∞∑
n=0

(
2n+ 1

n

)
xn, where x is a real number. Find the sum when it

exists.

Solution:

Let an(x) =
(
2n+ 1

n

)
xn. The ratio test gives

∣∣∣∣an+1(x)

an(x)

∣∣∣∣ = 4n+ 6

n+ 2
|x| → 4|x| as n → ∞.

Therefore the series converges absolutely for |x| < 1/4. To check convergence for x = 1/4 we use
Raabe’s test.

lim
n→∞

n

(
1− an+1(1/4)

an(1/4)

)
= lim

n→∞

2n

4n+ 8
=

1

2
< 1,

so the series diverges for x = 1/4.

Next we check convergence at x = −1/4. In this case an(−1/4) = (−1)nan(1/4). Check that

an+1(1/4)

an(1/4)
=

2n+ 3

2n+ 4
< 1,

so
an+1(1/4) < an(1/4), n = 0, 1, . . .

and thus an(1/4) strictly decreases as n → ∞.

To show that an(1/4) → 0 as n → ∞, we use Stirling’s theorem which says that

lim
n→∞

n! en√
2π nn n1/2

= 1.

Let S(n) =
n! en√

2π nn n1/2
. Then n! = S(n)

[√
2π nn n1/2

en

]
. We use this in checking the behavior of

an(1/4) as n → ∞.

an(1/4) =
(2n+ 1)!

n!(n+ 1)!

1

4n

=
S(2n+ 1)

S(n)S(n+ 1)

[√
2

π

(
1 +

1/2

n

)n(
1− 1/2

n+ 1

)n+1 (
2− 1

n+ 1

)1/2
](

1

n

)1/2

,

which shows that lim
n→∞

an(1/4) = 0. We then conclude that the series also converges for x = −1/4

by the alternating series test.

Hence the interval of convergence of the series is −1

4
≤ x <

1

4
.

To calculate the series, we start with the usual observation that for any R > 0,(
2n+ 1

n

)
=

1

2πi

∫
|z|=R

(z + 1)2n+1

zn+1
dz.



Then
∞∑
n=0

(
2n+ 1

n

)
xn =

1

2πi

∞∑
n=0

∫
|z|=R

(z + 1)2n+1xn

zn+1
dz

=
1

2πi

∞∑
n=0

∫
|z|=R

[
(1 + z)2x

z

]n
1 + z

z
dz

=
1

2πi

∫
|z|=R

∞∑
n=0

[
(1 + z)2x

z

]n
1 + z

z
dz

=
1

2πi

∫
|z|=R

1

1−
[
(1+z)2x

z

] 1 + z

z
dz

=
1

2πi

∫
|z|=R

z + 1

z − (1 + z)2x
dz.

The change of infinite sum and integration is justified when the convergence of the infinite sum is
uniform on the given circle. We check that for |z| = 1,∣∣∣∣(1 + z)2x

z

∣∣∣∣ ≤ 4|x| < 1 when |x| < 1

4
,

so we can take R = 1 and |x| < 1/4.

Now we evaluate the integral using residue theory. The roots of z − (1 + z)2x = 0 are

c1 =
1− 2x−

√
1− 4x

2x
and c2 =

1− 2x+
√
1− 4x

2x
.

Check that 0 < c1 < 1 < c2. We need the residue at c1 since it is the only pole inside the unit circle.

Res

(
(1 + z)2x

z
, c1

)
=

1−
√
1− 4x

2x
√
1− 4x

.

Hence we find
∞∑
n=0

(
2n+ 1

n

)
xn =

1−
√
1− 4x

2x
√
1− 4x

for − 1/4 ≤ x < 1/4,

where the equality of x to −1/4 is given by Abel’s theorem. Notice that the formula makes sense
when x = 0 also, since

1−
√
1− 4x

2x
= 1 + x+ 2x2 + 5x3 + · · · around x = 0.

Algebraically speaking,

1−
√
1− 4x

2x
=

1−
√
1− 4x

2x
· 1 +

√
1− 4x

1 +
√
1− 4x

=
2√

1− 4x(1 +
√
1− 4x)

.

The power of this summation formula lies in the fact that the convergence is extremely slow as |x|
is close to 1/4. For example when x = −1/4, the formula gives the sum as 0.5857... but a direct
summation by computer fails to find the second digit after the decimal point even after n = 17, 000.
In fact the third digit is not yet stabilized even after 5, 000, 000 iterations.



NAME: STUDENT NO:

Q-2) Find the sum of
∞∑
n=0

1

n4 + 1
. In general describe how to find

∞∑
n=0

1

n2k + 1
, where k is a positive

integer.

Solution:
∞∑
n=0

1

n2k + 1
= −1

2

2k∑
j=0

Res

(
π cotπz

1 + z2k
, zj

)
,

where z0 = 0 and z1, . . . , z2k are the roots of 1 + z2k = 0. In particular

∞∑
n=0

1

n4 + 1
= −1

2

4∑
j=0

Res

(
π cotπz

1 + z4
, zj

)
= 0.5784...


