\qquad

Math 302 Complex Analysis II - Homework 3 - Solutions

1	2	TOTAL
10	10	20

Please do not write anything inside the above boxes!
Check that there are 2 questions on your booklet. Write your name on top of every page. Show your work in reasonable detail. A correct answer without proper or too much reasoning may not get any credit.

Q-1) Classify all invertible meromorphic functions from $\mathbb{C} \cup\{\infty\}$ to $\mathbb{C} \cup\{\infty\}$.

Solution:

Let f be such a meromorphic function. Since f is one-to-one, it has only one pole of order 1 . If this pole is at infinity, then f is a polynomial, and since the pole is of order $1, f$ is a linear polynomial.

Now assume f has a pole at $z_{0} \in \mathbb{C}$. Change coordinates by setting $Z=z-z_{0}$. Now $f(Z)$ has a pole at $Z=0$ and hence cannot have another pole at infinity. Its value at infinity is determined by substituting $Z=1 / t$ and setting $t=0$. Since f must be regular at infinity, its Laurent expansion around $Z=0$ must be of the form $\frac{b_{1}}{Z}+a_{0}$ where $b_{1} \neq 0$. Putting back $Z=z-z_{0}$ shows that f is of the form, $\frac{a_{0} z+\left(b_{1}-a_{0} z_{0}\right)}{z-z_{0}}=\frac{a z+b}{c z+d}$. Check that $a d-b c=-b_{1} \neq 0$, so f is a Mobius transformation.

Q-2) Let $\left(z_{1}, z_{2}, z_{3}, z_{4}\right)$ and $\left(z_{1}^{\prime}, z_{2}^{\prime}, z_{3}^{\prime}, z_{4}^{\prime}\right)$ be two four-tuples of distinct points with cross-ratios of λ and λ^{\prime} respectively. Show that a Mobius transformation T exists with $T\left(z_{i}\right)=z_{i}^{\prime}, i=1, \ldots, 4$, if and only if $j(\lambda)=j\left(\lambda^{\prime}\right)$, where

$$
j(\lambda)=256 \frac{\left(\lambda^{2}-\lambda+1\right)^{3}}{\lambda^{2}(\lambda-1)^{2}}
$$

Solution:

Let T be the unique Mobius transformation sending $z_{1}, z_{2}, z_{3}, z_{4}$ to $\lambda, 1,0, \infty$ in that order. Since $j(\lambda)=j\left(\lambda^{\prime}\right)$, we have $\lambda^{\prime} \in\{\lambda, 1 / \lambda, 1-\lambda, 1 /(1-\lambda),(\lambda-1) / \lambda, \lambda /(\lambda-1)\}$. Then there exists a permutation $\sigma \in S_{4}$ and a unique Mobius transformation S such that S sends $z_{\sigma(1)}^{\prime}, z_{\sigma(2)}^{\prime}, z_{\sigma(3)}^{\prime}, z_{\sigma(4)}^{\prime}$ to $\lambda, 1,0, \infty$ in that order. Then $S^{-1} \circ T\left(z_{i}\right)=z_{\sigma(i)}^{\prime}, i=1,2,3,4$.

