\qquad

Math 302 Complex Analysis II - Homework 4 - Solutions

1	2	TOTAL
10	10	20

Please do not write anything inside the above boxes!
Check that there are 2 questions on your booklet. Write your name on top of every page. Show your work in reasonable detail. A correct answer without proper or too much reasoning may not get any credit.

Q-1) Let R be the complex plane with the non-positive real axis taken out. Find explicitly a conformal mapping f of R onto the unit disc U such that $f(1)=0$ and $f^{\prime}(1)>0$.

Solution:

Take the principal branch of \log function and define a square root function such that $\sqrt{1}=1$.
First note that $z \mapsto \sqrt{z}$ maps R to all z with strictly positive real parts and such points have distance strictly larger than 1 from the point -1 . So the map $g(z)=\frac{1}{\sqrt{z}+1}$ sends R conformally into U. Note that $g(1)=1 / 2$.

Now using Theorem 13.15 from the book, we can consider the map

$$
f(z)=\frac{2 g(z)-1}{g(z)-2}, x \in R .
$$

Check that $f(1)=0$ and $f^{\prime}(1)=1 / 6>0$.

Q-2) Let S be the Archimedean spiral given parametrically as

$$
x(t)=t \cos t, y(t)=t \sin t, \quad t \in[0, \infty)
$$

Let R be the complement of S in \mathbb{C}.
Can you define a branch of \log function on R ? If yes, construct this branch. If no, explain why.
Is R still conformal to the open unit disc?

Solution:

First of all, since R is a simply connected, proper open subset of \mathbb{C}, it is conformally isomorphic to the unit disc by the Riemann mapping theorem.

To construct a \log function on R, which is essential in proving the existence of such an isomorphism, fix a point w_{0} in the complement of R. Also fix a point z_{0} in R.

For any point z in R, let C_{z} be a path from z_{0} to z lying totally in R. Define

$$
\log z:=\int_{C_{z}} \frac{d z}{z-w_{0}} .
$$

Since R is simply connected, the integral is independent of which path chosen as long as the path lies in R.

This then defines an explicit branch of the logarithm function.

