\qquad

Math 302 Complex Analysis II - Homework 7 - Solutions

1	2	TOTAL
10	10	20

Please do not write anything inside the above boxes!
Check that there are 2 questions on your booklet. Write your name on top of every page. Show your work in reasonable detail. A correct answer without proper or with too much reasoning may not get any credit.

Q-1) Find an infinite product expression for $\cos z$ and prove in detail all phases of your arguments.

Solution:

Let λ_{k} be the sequence $\frac{1}{2},-\frac{1}{2}, \frac{3}{2},-\frac{3}{2}, \ldots$ Note that $\sum 1 /\left|\lambda_{k}\right|$ diverges but $\sum 1 /\left|\lambda_{k}\right|^{2}$ converges. By Weierstrass theorem, and the Note following it on page 219, we can write an entire function which vanishes only at these λ_{k} as

$$
f(z)=\prod_{k=1}^{\infty}\left[\left(1-\frac{z}{\lambda_{k}}\right) e^{z / \lambda_{k}}\right]=\prod_{k=0}^{\infty}\left(1-\frac{4 z^{2}}{(2 k+1)^{2}}\right) .
$$

Now the arguments of Proposition 17.8 on page 221 work almost verbatim except that you should consider the figure on page 222 as shifted to the left by $1 / 2$ first and then replace $\cos \pi z$ in the arguments with $\sin (\pi z+\pi / 2)$. The arguments there now give the fact that

$$
Q(z)=\frac{\prod_{k=0}^{\infty}\left(1-\frac{4 z^{2}}{(2 k+1)^{2}}\right)}{\cos \pi z}=\frac{\prod_{k=0}^{\infty}\left(1-\frac{4 z^{2}}{(2 k+1)^{2}}\right)}{\sin (\pi z+\pi / 2)}
$$

is constant. The constant is easily seen to be $Q(0)=1$.
Alternatively you can use the identity $\cos \pi z=\frac{\sin 2 \pi z}{2 \sin \pi z}$.
Finally replacing z by z / π, you get the infinite product expression of $\cos z$ as

$$
\cos z=\prod_{k=0}^{\infty}\left(1-\frac{4 z^{2}}{\pi^{2}(2 k+1)^{2}}\right) .
$$

Q-2) Prove that

$$
\pi=2 \prod_{\substack{n=2 \\ n \text { even }}}^{\infty} \frac{n^{2}}{(n-1)(n+1)}
$$

Solution:

This follows from the following simple equalities.

$$
\begin{aligned}
1 & =\sin \frac{\pi}{2} \\
& =\frac{\pi}{2} \prod_{k=1}^{\infty}\left(1-\frac{1}{4 k^{2}}\right) \\
& =\frac{\pi}{2} \prod_{k=1}^{\infty}\left(\frac{(2 k-1)(2 k+1)}{(2 k)^{2}}\right)
\end{aligned}
$$

