\qquad

Math 302 Complex Analysis II - Homework 8 - Solutions

1	2	TOTAL
10	10	20

Please do not write anything inside the above boxes!
Check that there are 2 questions on your booklet. Write your name on top of every page. Show your work in reasonable detail. A correct answer without proper or with too much reasoning may not get any credit.

Q-1) While trying to extend the Gamma function to the whole plane we made use of the following function

$$
f(z)=\frac{1}{z}-\frac{1}{(z+1)}+\frac{1}{2!(z+2)}-\cdots+\frac{(-1)^{n}}{n!(z+n)}+\cdots
$$

We claimed that " $f(z)$ is an analytic function for all $z \in \mathbb{C}$ except when $z=0,-1,-2, \ldots$." Prove this claim.

Solution:

Let $\sigma_{n}(z)=\frac{(-1)^{n}}{n!(z+n)}$. Let D be any compact region in the plane not including any of the points $z=0,-1,-2, \ldots$ Let $\delta=\inf \{|z-k| \mid z \in D$ and $k=0,-1,-2, \ldots\}$.

Since D is bounded, it is included in a disk of radius $R>0$ around the origin. There are only finitely many integers of the form $0,-1,-2, \ldots$ inside this disk. Around each such integer there is an open disk not intersecting D since D is closed. The smallest of these finitely many positive radii is δ, hence $\delta>0$.

Let $\epsilon>0$ be given. For any $z \in D,\left|\sigma_{n}(z)\right|=\frac{1}{n!|z+n|} \leq \frac{1}{n!\delta}$. Since $\sum_{n=0}^{\infty} \frac{1}{n!\delta}$ converges, by Weierstrass M-test, the convergence of $\sum_{n=0}^{\infty} \sigma_{n}(z)$ to $f(z)$ is uniform.

We showed that $\sum_{n=0}^{\infty} \sigma_{n}(z)$ converges uniformly to $f(z)$ on compacta. Since each $\sigma_{n}(z)$ is analytic, except at $z=0,-1,-2, \ldots$, so is $f(z)$.

STUDENT NO:

Q-2) Prove that $\sum_{\substack{p: \text { prime } \\ n \geq 2}} \frac{1}{n p^{n z}}$ is analytic in $\operatorname{Re} z>\frac{1}{2}$.
Show your work in detail, explain all your arguments.

Solution: Any finite sum of this expression is an entire function. It remains to show that the infinite sum converges uniformly on compacta for $\operatorname{Re} z>1 / 2$. Let $z=x+i y$ and $x>1 / 2$.

$$
\begin{aligned}
\sum_{n=2}^{\infty}\left|\frac{1}{n p^{n z}}\right| & =\sum_{n=2}^{\infty} \frac{1}{n p^{n x}} \\
& \leq \frac{1}{2} \sum_{n=2}^{\infty} \frac{1}{p^{n x}} \\
& =\frac{1}{2}\left(\frac{1}{1-1 / p^{x}}-1-\frac{1}{p^{x}}\right) \\
& =\frac{1}{2 p^{2 x}} \frac{p^{x}}{p^{x}-1} \\
& =\frac{1}{2 p^{2 x}}\left(1+\frac{1}{p^{x}-1}\right) \\
& \leq \frac{1}{2 p^{2 x}}\left(1+\frac{1}{2^{1 / 2}-1}\right) \\
& =\frac{1}{2 p^{2 x}}(3.4141 \ldots) \\
& <\frac{2}{p^{2 x}}
\end{aligned}
$$

Let D be any compact subset of $\operatorname{Re} z>1 / 2$. There is a $\delta>0$ such that for each $z \in D, x \geq 1 / 2+$ δ. Then $\frac{2}{p^{2 x}} \leq \frac{2}{p^{1+2 \delta}}$. Since $\sum_{p: \text { prime }} \frac{2}{p^{1+2 \delta}}$ converges, by Weierstrass M-test, $\sum_{\substack{p: \text { prime } \\ n \geq 2}} \frac{1}{n p^{n z}}$ converges uniformly. This completes the proof.

