Date: 28 July 2011, Thursday
Time: 10:00-12:00
Ali Sinan Sertöz

NAME: \qquad
STUDENT NO: \qquad

Math 302 Complex Analysis II - Make-Up Exam - Solutions

1	2	3	4	5	TOTAL
20	20	20	20	20	100

Please do not write anything inside the above boxes!
Check that there are 5 questions on your exam booklet. Write your name on top of every page. Show your work in reasonable detail. A correct answer without proper or too much reasoning may not get any credit.

Use the following at your own risk.

$$
\begin{aligned}
\tan z & =\sum_{k=1}^{\infty} \frac{\left|B_{2 k}\right| 2^{2 k}\left(2^{2 k}-1\right)}{(2 k)!} z^{2 k-1},|z|<\pi / 2 . \\
\cot z & =\frac{1}{z}-\sum_{k=1}^{\infty} \frac{4^{k}\left|B_{2 k}\right|}{(2 k)!} z^{2 k-1}, 0<|z|<\pi . \\
\sec z & =\sum_{k=0}^{\infty}(-1)^{k} \frac{E_{2 k}}{(2 k)!} z^{2 k},|z|<\pi / 2 . \\
\operatorname{cosec} z & =\frac{1}{z}+\sum_{k=1}^{\infty} \frac{\left(2^{2 k}-2\right)\left|B_{2 k}\right|}{(2 k)!} z^{2 k-1}, \quad 0<|z|<\pi . \\
B_{0}=1, B_{1}=-\frac{1}{2}, B_{2} & =\frac{1}{6}, B_{3}=0, B_{4}=-\frac{1}{30}, B_{5}=0, B_{6}=\frac{1}{42}, B_{7}=0, B_{8}=-\frac{1}{30} . \\
E_{0}=1, E_{1}=0, E_{2} & =-1, E_{3}=0, E_{4}=5, E_{5}=0, E_{6}=-61, E_{7}=0, E_{8}=1385 .
\end{aligned}
$$

Q-1) Find the value of the following sum and write its exact value in the space provided. No partials!

$$
\sum_{n=1}^{\infty} \frac{1}{n^{6}}=
$$

Solution:

$$
\begin{aligned}
\sum_{n=1}^{\infty} \frac{1}{n^{6}} & =-\frac{1}{2} \operatorname{Res}\left(\frac{\pi \cot \pi z}{z^{6}} ; z=0\right) \\
& =\frac{1}{2} \frac{4^{3}}{6!}\left|B_{6}\right| \pi^{6} \\
& =\frac{\pi^{6}}{945}
\end{aligned}
$$

Q-2) Evaluate the integral $\int_{27-i \infty}^{27+i \infty} \frac{14^{z}}{(2 z+1)^{6}} d z$, where the principal branch of \log is used in 14^{z}.

Solution:

Let $f(z)=14^{z}$. Then $\int_{27-i \infty}^{27+i \infty} \frac{f(z)}{(2 z+1)^{6}} d z=2 \pi i \operatorname{Res}\left(\frac{f(z)}{(2 z+1)^{6}} ; z=-1 / 2\right)=2 \pi i \frac{f^{(5)}(-1 / 2)}{5!2^{6}}$.
(For an explanation, see the first example on chapter 12.)
Since $f^{(5)}(-1 / 2)=(\log 14)^{5} 14^{-1 / 2}$, the answer is $2 \pi i \frac{(\log 14)^{5} 14^{-1 / 2}}{5!2^{6}} \approx 0.0279 i$.

Q-3) Let D be the unit disc around the origin. Find explicitly a function $f(x, y)$ such that f is harmonic on D and $\left.f\right|_{\partial D}=x^{3} y$. Can we arrange it so that $f(0,0)=1$? Explain why or how.

Solution:

Let $u(x, y)=\operatorname{Im} z^{4}=4 x^{3} y-4 x y^{3}$. Being the imaginary part of an analytic function, $u(x, y)$ is harmonic on D.

On the unit circle we have $\left.u\right|_{\partial D}=8 x^{3} y-4 x y$.
Observe that $x y$ is already harmonic everywhere.
We now have $x^{3} y=\left.\frac{1}{8} u\right|_{\partial D}+\frac{1}{2} x y$.
Hence we can take $f(x, y)=\frac{1}{8} u(x, y)+\frac{1}{2} x y=\frac{1}{2}\left(x^{3} y-x y^{3}+x y\right)$.
The general theory gives this as the unique function satisfying the requirements. Since $f(0,0)=0$, it cannot be changed.

Q-4) While trying to extend the Gamma function to the whole plane we made use of the following function

$$
f(z)=\frac{1}{z}-\frac{1}{(z+1)}+\frac{1}{2!(z+2)}-\cdots+\frac{(-1)^{n}}{n!(z+n)}+\cdots
$$

We claimed that " $f(z)$ is an analytic function for all $z \in \mathbb{C}$ except when $z=0,-1,-2, \ldots$. Prove this claim.

Solution:

Let $\sigma_{n}(z)=\frac{(-1)^{n}}{n!(z+n)}$. Let D be any compact region in the plane not including any of the points $z=0,-1,-2, \ldots$ Let $\delta=\inf \{|z-k| \mid z \in D$ and $k=0,-1,-2, \ldots\}$.

Since D is bounded, it is included in a disk of radius $R>0$ around the origin. There are only finitely many integers of the form $0,-1,-2, \ldots$ inside this disk. Around each such integer there is an open disk not intersecting D since D is closed. The smallest of these finitely many positive radii is $\leq \delta$, hence $\delta>0$.

Let $\epsilon>0$ be given. For any $z \in D,\left|\sigma_{n}(z)\right|=\frac{1}{n!|z+n|} \leq \frac{1}{n!\delta}$, and $\sum_{n=0}^{\infty} \frac{1}{n!\delta}$ converges. It now follows by Weierstrass M-test that the convergence of $\sum_{n=0}^{\infty} \sigma_{n}(z)$ to $f(z)$ is uniform.

We showed that $\sum_{n=0}^{\infty} \sigma_{n}(z)$ converges uniformly to $f(z)$ on compacta. Since each $\sigma_{n}(z)$ is analytic, except at $z=0,-1,-2, \ldots$, so is $f(z)$.

STUDENT NO:

Q-5) Prove that $\sum_{\substack{p: \text { prime } \\ n \geq 2}} \frac{1}{n p^{n z}}$ is analytic in $\operatorname{Re} z>\frac{1}{2}$.
Show your work in detail, explain all your arguments.

Solution: Any finite sum of this expression is an entire function. It remains to show that the infinite sum converges uniformly on compacta for $\operatorname{Re} z>1 / 2$. Let $z=x+i y$ and $x>1 / 2$.

$$
\begin{aligned}
\sum_{n=2}^{\infty}\left|\frac{1}{n p^{n z}}\right| & =\sum_{n=2}^{\infty} \frac{1}{n p^{n x}} \\
& \leq \frac{1}{2} \sum_{n=2}^{\infty} \frac{1}{p^{n x}} \\
& =\frac{1}{2}\left(\frac{1}{1-1 / p^{x}}-1-\frac{1}{p^{x}}\right) \\
& =\frac{1}{2 p^{2 x}} \frac{p^{x}}{p^{x}-1} \\
& =\frac{1}{2 p^{2 x}}\left(1+\frac{1}{p^{x}-1}\right) \\
& \leq \frac{1}{2 p^{2 x}}\left(1+\frac{1}{2^{1 / 2}-1}\right) \\
& =\frac{1}{2 p^{2 x}}(3.4141 \ldots) \\
& <\frac{2}{p^{2 x}}
\end{aligned}
$$

Let D be any compact subset of $\operatorname{Re} z>1 / 2$. There is a $\delta>0$ such that for each $z \in D, x \geq 1 / 2+\delta$. Then $\frac{2}{p^{2 x}} \leq \frac{2}{p^{1+2 \delta}}$. Since $\sum_{p: \text { prime }} \frac{2}{p^{1+2 \delta}}$ converges, it follows by Weierstrass M-test that $\sum_{\substack{p: \text { prime } \\ n \geq 2}} \frac{1}{n p^{n z}}$ converges uniformly. This completes the proof.

