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Math 302 Complex Analysis II – Midterm Exam 1 – Solutions

1 2 3 4 5 TOTAL

20 20 20 20 20 100

Please do not write anything inside the above boxes!

Check that there are 5 questions on your exam booklet. Write your name on top of every page. Show your
work in reasonable detail. A correct answer without proper or too much reasoning may not get any credit.

Use the following at your own risk.

tan z =
∞∑
k=1

|B2k| 22k(22k − 1)

(2k)!
z2k−1, |z| < π/2.

cot z =
1

z
−

∞∑
k=1

4k |B2k|
(2k)!

z2k−1, 0 < |z| < π.

sec z =
∞∑
k=0

Ek

(2k)!
z2k, |z| < π/2.

cosec z =
1

z
+

∞∑
k=1

(22k − 2)|B2k|
(2k)!

z2k−1, 0 < |z| < π.
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Q-1)

a) Explain in detail, without proving your claims, how you calculate the sum
∞∑
n=1

1

n2k
using residue

theory, where k ∈ N+.

b) Using the formulas given on the cover page, write explicitly the value of the sum
∞∑
n=1

1

n2k
,

where k ∈ N+.

Solution:

∞∑
n=1

1

n2k
= −1

2
Res

(
π cotπz

z2k
; 0

)
=

22k−1 |B2k|π2k

(2k)!
, k ∈ N+.
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Q-2) Evaluate the integral
∫ π+i∞

π−i∞

3z

zk+1
dz, where k ∈ N and the principal branch of log is used in 3z.

Bonus (extra 10 points): Suppose we use the branch −3π < θ ≤ −π for log in calculating 3z.
Does the value of the above integral change? If your answer is no, explain why. If your answer is
yes, calculate the new value.

Solution:

Let f(z) = 3z. Then
∫ π+i∞

π−i∞

3z

zk+1
dz = 2πiRes

(
f(z)

z2k+1
; 0

)
= 2πi

f (k)(0)

k!
.

Let −π < θp ≤ π be the principal branch of log function. Let θ = θp + α be another branch. In our
case the second branch is given by α = −2π and for 3, the principal branch gives θp = 0.

3z = exp(z log 3) = exp(z ln 3) for the principal branch and 3z = exp(z log 3) = exp(z[ln 3− 2πi])
for the other branch. Then f (k)(0) = (ln 3)k for the principal branch and f (k)(0) = (ln 3− 2πi)k for
the other branch.
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Q-3) Given four distinct points z1, z2, z3, z4 in C ∪ {∞}, let T be the unique Mobius transformation
sending z1, z2, z3 to ∞, 0, 1 in that order. We let ⟨z1, z2, z3, z4⟩ := Tz4 and call it the cross-ratio of
the four-tuple z1, z2, z3, z4.

a) Calculate ⟨1, i,−i,−1⟩.
b) Let S be any Mobius transformation. Prove or disprove that ⟨z1, z2, z3, z4⟩ =
⟨Sz1, Sz2, Sz3, Sz4⟩ for any four-tuple of distinct points z1, z2, z3, z4 in C ∪ {∞}.

Solution:

⟨1, i,−i,−1⟩ = T (−1) where T (z) =
z − i

z − 1
· −i− 1

−i− i
. Then T (−1) = 1/2.

Let T be the unique Mobius transformation sending z1, z2, z3 to ∞, 0, 1 in that order. Then T ◦
S−1 is the unique transformation that sends Sz1, Sz2, Sz3 to ∞, 0, 1 in that order. By definition
⟨Sz1, Sz2, Sz3, Sz4⟩ = T ◦ S−1(Sz4) = T (z4) = ⟨z1, z2, z3, z4⟩.
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Q-4) The value of an analytic function f(z) at z = ∞ is defined to be the value of f(1/t) at t = 0 as an
element of C ∪ {∞}. We can then consider a meromorphic function as a function from C ∪ {∞}
to C ∪ {∞}. Suppose that the Laurent expansion at the origin of such a meromorphic function is
of the form

bN
zN

+ · · ·+ b1
z
+ a0 + a1z + · · ·

where bN ̸= 0 and the series converges for 0 < |z| < ∞.

Further assume that f : C ∪ {∞} → C ∪ {∞} is one-to-one.

Prove or disprove that f is a Mobius transformation.

Solution:

Let g(z) = bN + bN−1z + · · · + b1z
N + a0z

N+1 + · · · . Since g is analytic and g(0) ̸= 0, using
the principal branch of logarithm, we can construct an analytic function h(z) = exp( 1

N
log g(z))

such that h(z)N = g(z). Then changing coordinate from z to w = h(z)/z, the function f becomes
f(w) = 1/wN . Since f is one-to-one, N must be 1.

Now f(z) =
b1 + a0z + a1z

2 + · · ·
z

. Since ∞ is already taken at z = 0, it should not be taken at

t = 0 again where z = 1/t. This forces aj = 0 for j > 0, and finally we have f(z) =
b1
z
+ a0 which

is a Mobius transformation.
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Q-5) Riemann mapping theorem states that any two simply connected, open, proper subsets of C are
conformally equivalent. Explain why Riemann insists on proper subsets.

Solution:

Assume that C is conformally equivalent to a proper subset R. Then by the Riemann mapping theorem
R is conformal to D where D is the unit disc. Thus there is a conformal isomorphism ϕ : C → D.
But clearly |ϕ(z)| < 1 and by Liouville’s theorem ϕ is constant. This contradicts that ϕ is a conformal
isomorphism. So no proper subset can be conformal to C itself.


