\qquad

Math 302 Complex Analysis II - Midterm Exam 1 - Solutions

1	2	3	4	5	TOTAL
20	20	20	20	20	100

Please do not write anything inside the above boxes!
Check that there are 5 questions on your exam booklet. Write your name on top of every page. Show your work in reasonable detail. A correct answer without proper or too much reasoning may not get any credit.

Use the following at your own risk.

$$
\begin{aligned}
\tan z & =\sum_{k=1}^{\infty} \frac{\left|B_{2 k}\right| 2^{2 k}\left(2^{2 k}-1\right)}{(2 k)!} z^{2 k-1},|z|<\pi / 2 \\
\cot z & =\frac{1}{z}-\sum_{k=1}^{\infty} \frac{4^{k}\left|B_{2 k}\right|}{(2 k)!} z^{2 k-1}, \quad 0<|z|<\pi \\
\sec z & =\sum_{k=0}^{\infty} \frac{E_{k}}{(2 k)!} z^{2 k}, \quad|z|<\pi / 2 \\
\operatorname{cosec} z & =\frac{1}{z}+\sum_{k=1}^{\infty} \frac{\left(2^{2 k}-2\right)\left|B_{2 k}\right|}{(2 k)!} z^{2 k-1}, \quad 0<|z|<\pi
\end{aligned}
$$

Q-1)

a) Explain in detail, without proving your claims, how you calculate the sum $\sum_{n=1}^{\infty} \frac{1}{n^{2 k}}$ using residue theory, where $k \in \mathbb{N}^{+}$.
b) Using the formulas given on the cover page, write explicitly the value of the sum $\sum_{n=1}^{\infty} \frac{1}{n^{2 k}}$, where $k \in \mathbb{N}^{+}$.

Solution:

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2 k}}=-\frac{1}{2} \operatorname{Res}\left(\frac{\pi \cot \pi z}{z^{2 k}} ; 0\right)=\frac{2^{2 k-1}\left|B_{2 k}\right| \pi^{2 k}}{(2 k)!}, \quad k \in \mathbb{N}^{+} .
$$

Q-2) Evaluate the integral $\int_{\pi-i \infty}^{\pi+i \infty} \frac{3^{z}}{z^{k+1}} d z$, where $k \in \mathbb{N}$ and the principal branch of \log is used in 3^{z}.
Bonus (extra 10 points): Suppose we use the branch $-3 \pi<\theta \leq-\pi$ for \log in calculating 3^{z}. Does the value of the above integral change? If your answer is no, explain why. If your answer is yes, calculate the new value.

Solution:

Let $f(z)=3^{z}$. Then $\int_{\pi-i \infty}^{\pi+i \infty} \frac{3^{z}}{z^{k+1}} d z=2 \pi i \operatorname{Res}\left(\frac{f(z)}{z^{2 k+1}} ; 0\right)=2 \pi i \frac{f^{(k)}(0)}{k!}$.
Let $-\pi<\theta_{p} \leq \pi$ be the principal branch of \log function. Let $\theta=\theta_{p}+\alpha$ be another branch. In our case the second branch is given by $\alpha=-2 \pi$ and for 3 , the principal branch gives $\theta_{p}=0$.
$3^{z}=\exp (z \log 3)=\exp (z \ln 3)$ for the principal branch and $3^{z}=\exp (z \log 3)=\exp (z[\ln 3-2 \pi i])$ for the other branch. Then $f^{(k)}(0)=(\ln 3)^{k}$ for the principal branch and $f^{(k)}(0)=(\ln 3-2 \pi i)^{k}$ for the other branch.

Q-3) Given four distinct points $z_{1}, z_{2}, z_{3}, z_{4}$ in $\mathbb{C} \cup\{\infty\}$, let T be the unique Mobius transformation sending z_{1}, z_{2}, z_{3} to $\infty, 0,1$ in that order. We let $\left\langle z_{1}, z_{2}, z_{3}, z_{4}\right\rangle:=T z_{4}$ and call it the cross-ratio of the four-tuple $z_{1}, z_{2}, z_{3}, z_{4}$.
a) Calculate $\langle 1, i,-i,-1\rangle$.
b) Let S be any Mobius transformation. Prove or disprove that $\left\langle z_{1}, z_{2}, z_{3}, z_{4}\right\rangle=$ $\left\langle S z_{1}, S z_{2}, S z_{3}, S z_{4}\right\rangle$ for any four-tuple of distinct points $z_{1}, z_{2}, z_{3}, z_{4}$ in $\mathbb{C} \cup\{\infty\}$.

Solution:

$\langle 1, i,-i,-1\rangle=T(-1)$ where $T(z)=\frac{z-i}{z-1} \cdot \frac{-i-1}{-i-i}$. Then $T(-1)=1 / 2$.
Let T be the unique Mobius transformation sending z_{1}, z_{2}, z_{3} to $\infty, 0,1$ in that order. Then $T \circ$ S^{-1} is the unique transformation that sends $S z_{1}, S z_{2}, S z_{3}$ to $\infty, 0,1$ in that order. By definition $\left\langle S z_{1}, S z_{2}, S z_{3}, S z_{4}\right\rangle=T \circ S^{-1}\left(S z_{4}\right)=T\left(z_{4}\right)=\left\langle z_{1}, z_{2}, z_{3}, z_{4}\right\rangle$.

Q-4) The value of an analytic function $f(z)$ at $z=\infty$ is defined to be the value of $f(1 / t)$ at $t=0$ as an element of $\mathbb{C} \cup\{\infty\}$. We can then consider a meromorphic function as a function from $\mathbb{C} \cup\{\infty\}$ to $\mathbb{C} \cup\{\infty\}$. Suppose that the Laurent expansion at the origin of such a meromorphic function is of the form

$$
\frac{b_{N}}{z^{N}}+\cdots+\frac{b_{1}}{z}+a_{0}+a_{1} z+\cdots
$$

where $b_{N} \neq 0$ and the series converges for $0<|z|<\infty$.
Further assume that $f: \mathbb{C} \cup\{\infty\} \rightarrow \mathbb{C} \cup\{\infty\}$ is one-to-one.
Prove or disprove that f is a Mobius transformation.

Solution:

Let $g(z)=b_{N}+b_{N-1} z+\cdots+b_{1} z^{N}+a_{0} z^{N+1}+\cdots$. Since g is analytic and $g(0) \neq 0$, using the principal branch of logarithm, we can construct an analytic function $h(z)=\exp \left(\frac{1}{N} \log g(z)\right)$ such that $h(z)^{N}=g(z)$. Then changing coordinate from z to $w=h(z) / z$, the function f becomes $f(w)=1 / w^{N}$. Since f is one-to-one, N must be 1 .

Now $f(z)=\frac{b_{1}+a_{0} z+a_{1} z^{2}+\cdots}{z}$. Since ∞ is already taken at $z=0$, it should not be taken at $t=0$ again where $z=1 / t$. This forces $a_{j}=0$ for $j>0$, and finally we have $f(z)=\frac{b_{1}}{z}+a_{0}$ which is a Mobius transformation.

Q-5) Riemann mapping theorem states that any two simply connected, open, proper subsets of \mathbb{C} are conformally equivalent. Explain why Riemann insists on proper subsets.

Solution:

Assume that \mathbb{C} is conformally equivalent to a proper subset R. Then by the Riemann mapping theorem R is conformal to D where D is the unit disc. Thus there is a conformal isomorphism $\phi: \mathbb{C} \rightarrow D$. But clearly $|\phi(z)|<1$ and by Liouville's theorem ϕ is constant. This contradicts that ϕ is a conformal isomorphism. So no proper subset can be conformal to \mathbb{C} itself.

