\qquad

Math 302 Complex Analysis II - Midterm Exam 2 - Solutions

1	2	3	4	5	TOTAL
20	20	20	20	20	100

Please do not write anything inside the above boxes!
Check that there are 5 questions on your exam booklet. Write your name on top of every page. Show your work in reasonable detail. A correct answer with little or too much reasoning may not get any credit.

Q-1) Let D be the right half plane and f an analytic function on D with a continuous extension to \bar{D}. Assume that $|f(z)| \leq 1$ for $z \in \partial D$, and $|f(z)| \leq 2$ for $z \in D$. Give a detailed proof that actually $|f(z)| \leq 1$ for all $z \in D$.

Solution:

Fix a $z_{0} \in D$. We want to show that $\left|f\left(z_{0}\right)\right| \leq 1$.
Fix a positive integer N. Consider the function $h_{N}(z)=\frac{f^{N}(z)}{z+1}, z \in D$. Clearly $\left|h_{N}(z)\right| \leq 1$ for $z=y i \in \partial D$.

Choose $R>\left|z_{0}\right|$. For all $z \in D$ with $|z|=R$, we must have $\left|h_{N}(z)\right| \leq \frac{2^{N}}{R}$.
Let D_{R} be the set of points in \bar{D} with $|z| \leq R$. By the usual maximal modulus principle, for all $z \in D_{R},\left|h_{N}(z)\right| \leq \max \left(\frac{2^{N}}{R}, 1\right)$. Choosing R large enough, we conclude that $\left|h_{N}\left(z_{0}\right)\right| \leq 1$.

This gives $\left|f\left(x_{0}\right)\right| \leq\left|z_{0}+1\right|^{1 / N}$. Since $\left|z_{0}+1\right|^{1 / N} \downarrow 1$ as $N \rightarrow \infty,\left|f\left(z_{0}\right)\right|$ cannot be equal to any value strictly larger than 1. i.e. $\left|f\left(x_{0}\right)\right| \leq 1$.

Q-2) Let D be the unit disc around the origin. Find explicitly a function $f(x, y)$ such that f is harmonic on D and $\left.f\right|_{\partial D}=x^{3}$. Can we arrange it so that $f(0,0)=\pi$? Explain why or how.

Solution:

Let $u(x, y)=\operatorname{Re} z^{3}=x^{3}-3 x y^{2}$. Being the real part of an analytic function, $u(x, y)$ is harmonic on D.

On the unit circle we have $\left.u\right|_{\partial D}=4 x^{3}-3 x$. Observe that $3 x$ is already harmonic everywhere. This gives $x^{3}=\frac{1}{4}(u(x, y)+3 x)$ on the unit circle.

Thus we found a function $f(x, y)=\frac{1}{4}(u(x, y)+3 x)=\frac{1}{4}\left(x^{3}-3 x y^{2}+3 x\right)$ which is harmonic on D and restricts to x^{3} on the boundary. Such a harmonic function is unique. Since we already have $f(0,0)=0$, there is no way to arrange it to get another value.

Q-3) (i): Let f be an entire function with $|f(z)| \geq 1$ for all $z \in \mathbb{C}$. Prove or disprove that $f(z)=f(0)$ for all $z \in \mathbb{C}$.
(ii): Let f be an entire function with $\operatorname{Re} f(z) \leq 5$ for all $z \in \mathbb{C}$. Prove or disprove that $f(z)=f(0)$ for all $z \in \mathbb{C}$.

Solution:

(i): The function $h(z)=\frac{1}{f(z)}$ is entire since $f(z)$ is never zero and $|h(z)| \leq 1$ since $|f(z)| \geq 1$ for all $z \in \mathbb{C}$. By Liouville's theorem, $h(z)$ is constant, and hence $f(z)$ is constant.
(ii): Since $\operatorname{Re} f \leq 5$, it follows that $\operatorname{Re}(6-f(z)) \geq 1$ and then $|f(z)| \geq 1$ for all $z \in \mathbb{C}$. Now by the first part $6-f$ and hence f is constant.

Q-4) Show that $\prod_{k=0}^{\infty}\left(1+z^{2^{k}}\right)$ converges uniformly to a function f on some region D in \mathbb{C}. Find explicitly f and D.

Solution:

Let $P_{n}(z)=\prod_{k=0}^{n}\left(1+z^{2^{k}}\right)$. By induction we see that

$$
P_{n}(z)=1+z+\cdots+z^{2^{n+1}-1}
$$

Then clearly $P_{n}(z)$ converges uniformly, since it is part of a geometric series, to $f(z)=\frac{1}{1-z}$ on the unit disc.

Q-5) (i): Find the radius of convergence of $f(z)=\sum_{n=0}^{\infty} z^{n!}$ and prove or disprove that f has a natural boundary.
(ii): Recall that $\Gamma(z)=\int_{0}^{\infty} e^{-t} t^{z-1} d t$ for $\operatorname{Re} z>0$. Choose any two real numbers $0<x_{0}<x_{1}$. Show that $|\Gamma(z)| \leq \Gamma\left(x_{0}\right)+\Gamma\left(x_{1}\right)$ for all z with $x_{0} \leq \operatorname{Re} z \leq x_{1}$.

Solution:

(i): Setting $a_{n}=z^{n!}$ and using the ratio test we find

$$
\left|\frac{a_{n+1}}{a_{n}}\right|=|z|^{n n!}<1 \Rightarrow|z|<1
$$

so the radius of convergence is 1 .
For any positive integer N, let ω_{N} denote an N-th root of unity. For all $n \geq N$, we have $\left(\omega_{N}\right)^{n!}=$ $\left[\left(\omega_{N}\right)^{N}\right]^{n!/ N}=1$, so the infinite series diverges at $z=\omega_{N}$. Since all the N-th roots of unity, for all N, are dense on the unit circle, $|z|=1$ gives a natural boundary for the series.
(ii): The proof is easy and can be given by the following self explanatory sequence of inequalities.

$$
\begin{aligned}
|\Gamma(z)| & =\left|\int_{0}^{\infty} e^{-t} t^{z-1} d t\right| \\
& \leq \int_{0}^{\infty} e^{-t} t^{x-1} d t \\
& =\int_{0}^{1} e^{-t} t^{x-1} d t+\int_{1}^{\infty} e^{-t} t^{x-1} d t \\
& \leq \int_{0}^{1} e^{-t} t^{x_{0}-1} d t+\int_{1}^{\infty} e^{-t} t^{x_{1}-1} d t \\
& \leq \Gamma\left(x_{0}\right)+\Gamma\left(x_{1}\right)
\end{aligned}
$$

