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Math 302 Complex Analysis II – Final Exam – Solutions
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Please do not write anything inside the above boxes!

Check that there are 5 questions on your booklet. Write your name on top of every page. Show your work in
reasonable detail. A correct answer without proper or too much reasoning may not get any credit.

In this exam you are allowed to use two A4 size cheat-sheets provided that they are written by yourself, no
photocopies are allowed. Your name must be written on both of them during the exam. You are asked to hand
in your cheat-sheets together with your answers.



NAME: STUDENT NO:

Q-1) Let L be a line in the complex plane and let T be a Mobius transformation sending L again to a line. Classify
all such T .

Solution: This is Homework 2, Question 1.

There are two cases. Either T (∞) =∞, or T (∞) ∈ C.

If T (∞) =∞, then clearly T is linear.

If, on the other hand, T (∞) = w0 ∈ C, then there must exist a z0 ∈ L ⊂ C such that T (z0) = ∞. Then we
must have

T (z) = w0 +
w

z − z0
,

for some w ∈ C. Let z1 ∈ C be a point on L other than z0, and let T (z1) = w1 ∈ T (L). Then

T (z) = w0 +
(z1 − z0)(w1 − w0)

z − z0
.

Any point on L is of the form z0 + t(z1 − z0) where t ∈ R. Check that

T (z0 + t(z1 − z0)) = w0 +
1

t
(w1 − w0).

So the image is the line through w0 and w1.

Conclusion:

If T (∞) =∞, then let z0 and z1 be two different points on L. Let w0 = T (z0) and w1 = T (z1). Then

T (z) =
w1 − w0

z1 − z0
(z − z0) + w0.

If T (∞) = w0 ∈ C, then let z0 ∈ L be such that T (z0) =∞. Choose any point z1 ∈ C on L different than z0
and set w1 = T (z1). Then

T (z) = w0 +
(z1 − z0)(w1 − w0)

z − z0
.

Another solution which I learned from your papers is the following.

Any Mobius transformation is of the form T (z) = az+b
cz+d . If c = 0, then T is linear and sends L to a line. If

c 6= 0, then T (z) = (f3 ◦ f2 ◦ f1)(z) where

f1(z) = cz + d, f2(z) =
1

z
, f3(z) =

a

c
−
(
ad− bc

c

)
z.

Here f1 and f3 are linear and take lines to lines. But f2 takes only those lines through the origin to lines. If we
want T to send L to a line, then there must exist a point z ∈ C on L such that cz + d = 0.

Conclusion: The Mobius transformations sending L to a line are of the following form.

{az + b

cz + d
| ad− bc 6= 0 and − d

c
∈ L}.

Note that when c = 0, we can interpret −d/c as infinity which is certainly on L and hence this description also
covers the linear transformations.
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Q-2) Let f be an entire function of finite order with finitely many zeros. Show that either f(z) is a polynomial or
f(z) + z has infinitely many zeros.

Solution: This is Homework 4, Question 1.

If f(z) is a polynomial, then we are done. If f(z) is not a polynomial, then we know that f(z) = P (z)eQ(z)

where P and Q are polynomials and Q(z) is not constant. Suppose that g(z) = f(z) + z has finitely many
zeros. Since g is entire and is of finite order, it must be of the form

g(z) = R(z)eS(z),

where R and S are polynomials. This gives the equality

z + P (z)eQ(z) = R(z)eS(z). (∗)

Taking the second derivatives of both sides and rearranging we obtain an equality of the form

P0(z)e
Q(z) = R0(z)e

S(z),

where P0(z) and R0(z) are polynomials. This gives

eQ(z)−S(z) =
R0(z)

P0(z)
.

Since the LHS has neither zeros nor poles, the RHS being a rational function of z must be constant. This
implies in particular that S(z) = Q(z) + c0, where c0 ∈ C is a constant. Putting this into equation (∗), we get

eQ(z) =
z

R(z)ec0 − P (z)
.

A similar argument as above forces Q(z) to be a constant, which is a contradiction.

Hence f(z) + z must have infinitely many zeros.
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Q-3) Does there exist a function f(z) defined on |z| < 1 and analytic there with the property that the zero set of
f consists of the set {1− 1

k | k = 1, 2, . . . }? If yes, construct such a function, if no explain why?

Solution: This is an Exercise on Chapter 17.

First construct, using Weierstrass method, an entire function g(z) which vanishes only at z = 1, 2, . . . . For

example such a function is g(z) =
∞∏
k=1

(
1− z

k

)
ez/k.

Then f(z) = g(1/(1− z)) is the required function since 1/(1− z) is well defined for |z| < 1 and 1/(1− (1−
1/k)) = k.

I learned from Alper İncecik and Muhammed Said Gündoğan that f(z) = sin
π

1− z
does the trick.
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Q-4) Show that
∑
p prime

1

p
diverges.

Solution: This is Homework 4, Question 4.

It is known that if
∞∑
k=1

zk and
∞∑
k=1

|zk|2 converges, then
∞∏
k=1

(1 + zk) converges.

We have

ζ(z)
∏
p prime

(
1− 1

pz

)
= 1, Re z > 1.

Since lim
z→1

ζ(z) = ∞, we must have
∏
p prime

(
1− 1

p

)
diverge to zero. Since

∑
1/p2 converges, we must have∑

1/p diverge, which follows from the above remark.
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Q-5) Show that for any real number α, we have

lim
n→∞

Γ(n+ α)

Γ(n)nα
= 1.

Hint: You may use the asymptotic formula Γ(z) =
√

(2π/z) (z/e)z (1 + εz) for Re z > 0, where
limz→∞ εz = 0.
Remark: If you only solve the problem where α is any positive integer, then you will get 12 points.

Solution:

Using the hint we get

Γ(n+ α)

Γ(n)nα
=

√
2π√

n+ α

(n+ α)n+α

en+α
(1 + εn+α)

√
2π√
n

nn

en
(1 + εn)nα

=

√
n

n+ α

(
1 +

α

n

)n+α
e−α

1 + εn+α
1 + εn

→ 1 as n→∞.

If α = m is a positive integer, then

Γ(n+m)

Γ(n)nm
=

(n− 1)!

m terms︷ ︸︸ ︷
n(n+ 1) · · · (n+m− 1)

(n− 1)!nm
→ 1 as n→∞.


