Date: 13 May 2016, Friday
Time: 15:30-17:30
Instructor: Ali Sinan Sertöz
NAME:
STUDENT NO: $\qquad$

Math 302 Complex Analysis II - Final Exam - Solutions

| 1 | 2 | 3 | 4 | TOTAL |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |
| 25 | 25 | 25 | 25 | 100 |

Please do not write anything inside the above boxes!
Check that there are $\mathbf{4}$ questions on your exam booklet. Write your name on top of every page. Show your work in reasonable detail. A correct answer without proper or too much reasoning may not get any credit.


## Q-1)

(a) Find a function $f$, analytic on $|z|<1$ and such that $f(z)=0$ if and only if $z=1-\frac{1}{k}$, where $k=1,2,3, \ldots$.
(b) Find an entire function $f$ such that $f(z)=0$ if and only if $z=1-\frac{1}{k}$, where $k=1,2,3, \ldots$

## Solution:

(a): By Weierstrass theory there exists an entire function $g(z)$ such that $g(z)=0$ if and only if $z$ is a positive integer. Then define $f(z)=g\left(\frac{1}{1-z}\right)$.
(b): The zero set has an accumulation point at $z=0$, so such an $f$ must be identically equal to zero.

Q-2) Evaluate the integral $\int_{|z|=1 / 2} \frac{\cot (z)}{z^{4}-z^{5}} d z$.
Hint: The Laurent series for the cotangent function is $\cot z=\frac{1}{z}-\frac{1}{3} z-\frac{1}{45} z^{3}-\frac{2}{945} z^{5}-\frac{1}{4725} z^{7}-\frac{2}{93555} z^{9}+\cdots$.
Solution:
The only singularity in the given circle is $z=0$. Here we also have

$$
\begin{aligned}
\frac{\cot (z)}{z^{4}-z^{5}} & =\frac{1}{z^{4}} \frac{\cot z}{1-z} \\
& =\frac{1}{z^{4}}\left[\cot (z) \cdot\left(1+z+z^{2}+\cdots+z^{n}+\cdots\right)\right] \\
& =\frac{1}{z^{4}}\left[\frac{1}{z}+1+\frac{2}{3} z+\frac{2}{3} z^{2}+\frac{29}{45} z^{3}+\frac{29}{45} z^{4}+\frac{607}{945} z^{5}+\cdots\right] \\
& =\cdots+\frac{29}{45 z}+\cdots
\end{aligned}
$$

Hence the value of the integral is $2 \pi i \frac{29}{45}=\frac{58 \pi}{45} i \approx 4.049163866 i$.

Q-3) Recall that

$$
\zeta(z)=1+\frac{1}{2^{z}}+\frac{1}{3^{z}}+\cdots, \text { for } \operatorname{Re} z>1
$$

and that $\zeta(z)$ can be extended to the whole plane as a meromorphic function whose only singularity is a simple pole at $z=1$ with residue 1 .

Consider now the function

$$
f(z)=1-\frac{1}{2^{z}}+\frac{1}{3^{z}}-\frac{1}{4^{z}}+\cdots, \text { for } \operatorname{Re} z>1
$$

Show that $f$ can be extended to the whole plane analytically, i.e. with no poles.

## Solution:

That $\zeta(z)$ has a simple pole at $z=1$ with residue 1 means that

$$
\lim _{z \rightarrow 1}(z-1) \zeta(z)=1
$$

On the other hand the identity

$$
f(z)=1-\frac{1}{2^{z}}+\frac{1}{3^{z}}-\frac{1}{4^{z}}+\cdots=\left(1-\frac{2}{2^{z}}\right) \zeta(z)
$$

shows that $f$ is analytic everywhere with the possible exception of $z=1$. To check if $f$ is analytic at $z=1$ we consider the limit as $z \rightarrow 1$.

$$
\lim _{z \rightarrow 1} f(z)=\lim _{z \rightarrow 1}\left(1-\frac{2}{2^{z}}\right) \zeta(z)=\lim _{z \rightarrow 1}\left(\frac{2^{z}-2}{2^{z}(z-1)}\right)((z-1) \zeta(z))=\ln 2 .
$$

Existence of this limit implies that $f$ is also analytic at $z=1$.

Q-4) Show that the unit circle is a natural boundary for the power series $\sum_{n=0}^{\infty} z^{n!}$.

## Solution:

If $\alpha$ is a $k$-th root of unity then for any $n \geq k$ we have $\alpha^{n!}=1$. Hence as $z$ approaches $\alpha$, the power series becomes an infinite sum of 1 s , hence infinite. Since such $\alpha$ are dense on the boundary, no point on the boundary has an open neighborhood where the power series is finite.

On the other hand, using theorem 18.5 , we see that $\frac{(n+1)!}{n!} \rightarrow \infty$ as $n \rightarrow \infty$. Since the limit is strictly larger than 1 , the theorem concludes that he circle of convergence is a natural boundary.

