Date: 13 May 2016, Friday Time: 15:30-17:30 Instructor: Ali Sinan Sertöz

NAME:....

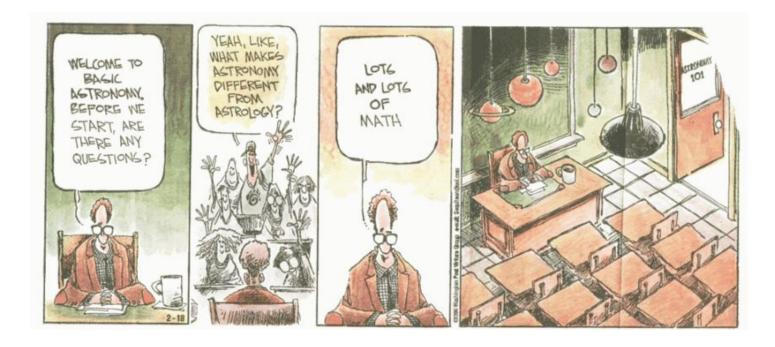
STUDENT NO:....

Math 302 Complex Analysis II – Final Exam – Solutions

1	2	3	4	TOTAL
25	25	25	25	100

Please do not write anything inside the above boxes!

Check that there are **4** questions on your exam booklet. Write your name on top of every page. Show your work in reasonable detail. A correct answer without proper or too much reasoning may not get any credit.



NAME:

STUDENT NO:

Q-1)

(a) Find a function f, analytic on |z| < 1 and such that f(z) = 0 if and only if $z = 1 - \frac{1}{k}$, where $k = 1, 2, 3, \ldots$

(b) Find an entire function f such that f(z) = 0 if and only if $z = 1 - \frac{1}{k}$, where k = 1, 2, 3, ...

Solution:

(a): By Weierstrass theory there exists an entire function g(z) such that g(z) = 0 if and only if z is a positive integer. Then define $f(z) = g\left(\frac{1}{1-z}\right)$.

(b): The zero set has an accumulation point at z = 0, so such an f must be identically equal to zero.

Q-2) Evaluate the integral $\int_{|z|=1/2} \frac{\cot(z)}{z^4 - z^5} dz$.

Hint: The Laurent series for the cotangent function is $\cot z = \frac{1}{z} - \frac{1}{3}z - \frac{1}{45}z^3 - \frac{2}{945}z^5 - \frac{1}{4725}z^7 - \frac{2}{93555}z^9 + \cdots$

Solution:

The only singularity in the given circle is z = 0. Here we also have

$$\frac{\cot(z)}{z^4 - z^5} = \frac{1}{z^4} \frac{\cot z}{1 - z}$$

= $\frac{1}{z^4} [\cot(z) \cdot (1 + z + z^2 + \dots + z^n + \dots)]$
= $\frac{1}{z^4} [\frac{1}{z} + 1 + \frac{2}{3}z + \frac{2}{3}z^2 + \frac{29}{45}z^3 + \frac{29}{45}z^4 + \frac{607}{945}z^5 + \dots]$
= $\dots + \frac{29}{45z} + \dots$

Hence the value of the integral is $2\pi i \frac{29}{45} = \frac{58\pi}{45} i \approx 4.049163866 i$.

STUDENT NO:

NAME:

Q-3) Recall that

$$\zeta(z) = 1 + \frac{1}{2^z} + \frac{1}{3^z} + \cdots$$
, for Re $z > 1$,

and that $\zeta(z)$ can be extended to the whole plane as a meromorphic function whose only singularity is a simple pole at z = 1 with residue 1.

Consider now the function

$$f(z) = 1 - \frac{1}{2^z} + \frac{1}{3^z} - \frac{1}{4^z} + \cdots$$
, for $\operatorname{Re} z > 1$.

Show that f can be extended to the whole plane analytically, i.e. with no poles.

Solution:

That $\zeta(z)$ has a simple pole at z = 1 with residue 1 means that

$$\lim_{z \to 1} (z-1)\zeta(z) = 1.$$

On the other hand the identity

$$f(z) = 1 - \frac{1}{2^z} + \frac{1}{3^z} - \frac{1}{4^z} + \dots = \left(1 - \frac{2}{2^z}\right)\zeta(z)$$

shows that f is analytic everywhere with the possible exception of z = 1. To check if f is analytic at z = 1 we consider the limit as $z \to 1$.

$$\lim_{z \to 1} f(z) = \lim_{z \to 1} \left(1 - \frac{2}{2^z} \right) \zeta(z) = \lim_{z \to 1} \left(\frac{2^z - 2}{2^z(z - 1)} \right) \left((z - 1)\zeta(z) \right) = \ln 2.$$

Existence of this limit implies that f is also analytic at z = 1.

NAME:

STUDENT NO:

Q-4) Show that the unit circle is a natural boundary for the power series $\sum_{n=0}^{\infty} z^{n!}$.

Solution:

If α is a k-th root of unity then for any $n \ge k$ we have $\alpha^{n!} = 1$. Hence as z approaches α , the power series becomes an infinite sum of 1s, hence infinite. Since such α are dense on the boundary, no point on the boundary has an open neighborhood where the power series is finite.

On the other hand, using theorem 18.5, we see that $\frac{(n+1)!}{n!} \to \infty$ as $n \to \infty$. Since the limit is strictly larger than 1, the theorem concludes that he circle of convergence is a natural boundary.