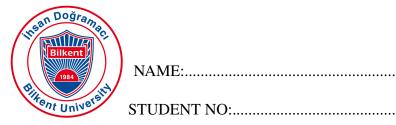
Due Date: 10 February 2015, Tuesday

Time: Class time

Instructor: Ali Sinan Sertöz



Math 430 / Math 505 Introduction to Complex Geometry – Homework 1 – Solutions

1	2	3	4	5	TOTAL
20	40	40	0	0	100

Please do not write anything inside the above boxes!

Check that there are **3** questions on your exam booklet. Write your name on top of every page. Show your work in reasonable detail. A correct answer without proper or too much reasoning may not get any credit. **Submit your solutions on this booklet only. Use extra pages if necessary.**

Rules for Homework and Take-Home Exams

- (1) You may discuss the problems only with your classmates or with me. In particular you may not ask your assigned questions or any related question to online forums.
- (2) You may use any written source be it printed or online. Google search is perfectly acceptable.
- (3) It is absolutely mandatory that you write your answers alone. Any similarity with your written words with any other solution or any other source that I happen to know is a direct violation of honesty.
- (4) You must obey the usual rues of attribution: all sources you use must be explicitly cited in such a manner that the source is easily retrieved with your citation. This includes any ideas you borrowed from your friends.
- (5) Even if you find a solution online, you must rewrite it in your own narration, fill in the blanks if any, making sure that you exhibit your total understanding of the ideas involved.
- (6) If I sense any hint of violation of any of the above rules in your paper I will either assume that you did not answer that question or that your contribution is only on the level of a scribe in which case I will assign a small fraction of the grade for that question.

Affidavit of compliance with the above rules: I affirm that I have complied with the above rules in preparing this submitted work. Moreover I declare that every solution I wrote reflects my true understanding of the problem, and any sources used, ideas from friends or other sources included, are explicitly cited without exception. I am aware that violation of the above codes results not only in losing some meaningless grades but also of respect and dignity.

Please sign here:

Q-1) Let $\epsilon = (\epsilon_1, \epsilon_2)$ with $\epsilon_1, \epsilon_2 > 0$. Let $B_{\epsilon}(0)$ be the polydisc around the origin defined by

$$B_{\epsilon}(0) = \{(z_1, z_2) \in \mathbb{C}^2 \mid |z_1| < \epsilon_1 \text{ and } |z_2| < \epsilon_2\}.$$

- (a) Describe the set $\partial B_{\epsilon}(0)$, the boundary of the polydisc $B_{\epsilon}(0)$, in a similar way as the above description of the polydisc itself.
- (b) Let $\delta = (\delta_1, \delta_2)$ with $\delta_1, \delta_2 > 0$. Let $(a, b) \in \partial B_{\epsilon}(0)$. Show that the polydisc $B_{\delta}(a, b)$ around (a, b) contains both a point in $B_{\epsilon}(0)$ and a point in the complement of $B_{\epsilon}(0)$ by explicitly writing two such points.

Solution:

The boundary can be described as follows.

$$\partial B_{\epsilon}(0) = \{(z_1, z_2) \in \mathbb{C} \mid \text{ either } |z_1| = \epsilon_1 \text{ and } |z_2| \le \epsilon_2, \text{ or } |z_1| \le \epsilon_1 \text{ and } |z_2| = \epsilon_2 \}$$

Next we show that this description satisfies the definition of boundary in the sense that any neighborhood of any point satisfying the above conditions contains both a point in $B_{\epsilon}(0)$ and a point in its complement.

Let $(a, b) \in \partial B_{\epsilon}(0)$ and assume that $|a| = \epsilon_1$. Define

$$(z_1, z_2) = ((1 + \frac{\delta_1}{2\epsilon_1})a, b).$$

Then $|z_1-a|=(\frac{\delta_1}{2\epsilon_1})|a|=\frac{\delta_1}{2}<\delta_1 \text{ and } |z_2-b|=0<\delta_2.$ Hence $(z_1,z_2)\in B_\delta(a,b).$ But $|z_1|=(1+\frac{\delta_1}{2\epsilon_1})|a|=(1+\frac{\delta_1}{2\epsilon_1})\epsilon_1>\epsilon_1,$ hence $(z_1,z_2)\not\in B_\epsilon(0).$

Next, choose a positive real number n such that both

$$0 \le 1 - \frac{\delta_i}{n\epsilon_i} < 1, \quad \text{for} \quad i = 1, 2.$$

Define

$$(z_1, z_2) = ((1 - \frac{\delta_1}{n\epsilon_1})a, (1 - \frac{\delta_2}{n\epsilon_2})b).$$

Since $|z_1-a|<\delta_1$ and $|z_2-b|<\delta_2$, we have that $(z_1,z_2)\in B_\delta(a,b)$. Moreover we have $|z_i|\le (1-\frac{\delta_i}{n\epsilon_i})\epsilon_i<\epsilon_i$ for i=1,2. Hence $(z_1,z_2)\in B_\epsilon(0)$.

Q-2) Let U be a non-empty open subset in \mathbb{C}^n where n>1, and let $f:U\to\mathbb{C}$ be a non-constant holomorphic function. Show that f(U) is open in \mathbb{C} . You may use the fact that the statement is true when n=1.

Solution:

Choose a point p in $F(U) \subset \mathbb{C}$. Let $q \in U$ be a preimage of p, i.e. f(q) = p. Choose an $\epsilon > 0$ such that if $\vec{\epsilon} = (\epsilon, \ldots, \epsilon)$ and $q = (q_1, \ldots, q_n)$, then the polydisc

$$B_{\vec{\epsilon}}(q) = \{ z \in \mathbb{C}^n \mid |z_i - q_i| < \epsilon, \text{ for } i = 1, \dots, n \}$$

lies totally in U. Such a choice is possible since U is open. Let

$$D_{\epsilon} = \{ w \in \mathbb{C} \mid |w| < \epsilon \}$$

be the open disc around the origin in $\mathbb C$ of radius ϵ . Define a collection of vectors $\lambda \in \mathbb R^n$ as

$$V = \{ \lambda = (\lambda_1, \dots, \lambda_n) \in \mathbb{R}^n \mid |\lambda_i| < 1 \text{ for } i = 1, \dots, n \}.$$

It follows that

$$z \in B_{\vec{\epsilon}}(q)$$
 if and only if $z = q + \lambda w$ for some $\lambda \in V$ and $w \in D_{\epsilon}$.

For each $\lambda \in V$ define the set

$$U_{\lambda} = \{ z \in \mathbb{C}^n \mid z = q + \lambda w \text{ for some } w \in D_{\epsilon} \}.$$

We claim that there exists a $\lambda \in V$ such that $f|U_{\lambda}$ is not constant. Assume the contrary. Since we have

$$B_{\vec{\epsilon}}(q) = \bigcup_{\lambda \in V} U_{\lambda},$$

and since $q \in U_{\lambda}$ for every $\lambda \in V$, it then follows that $f|B_{\vec{\epsilon}}(q)$ is constant and is equal to f(q). This contradicts the assumption that f is not constant.

Finally fix a $\lambda \in V$ such that f is not constant on U_{λ} .

Consider the function

$$\phi_{\lambda}: D_{\epsilon} \to f(U) \subset \mathbb{C},$$

 $w \mapsto f(q + \lambda w).$

Note that $\phi_{\lambda}(D_{\epsilon}) = f(U_{\lambda}) \subset f(U)$. Since as a holomorphic function of a single variable, the function ϕ_{λ} is an open mapping, the set $\phi_{\lambda}(D_{\epsilon})$ is an open neighborhood of p in f(U). Hence f is an open mapping.

Q-3) Let U be a non-empty open subset in \mathbb{C}^n where n>1, and let $f:U\to\mathbb{C}$ be a non-constant holomorphic function. Show that there is no point $z_0\in U$ such that $|f(z_0)|\geq |f(z)|$ for all $z\in U$. You may use the fact that the statement is true when n=1.

Solution:

First Solution: Suppose there exists a $z_0 \in U$ such that $|f(z_0)| \ge |f(z)|$ for all $z \in U$. Set $q = z_0$. Using the notation of the solution for Question 2, consider the one variable holomorphic function ϕ_{λ} for any fixed $\lambda \in V$. Then we would have $|\phi_{\lambda}(0)| \ge |\phi_{\lambda}(w)|$ for every $w \in D_{\epsilon}$, a clear contradiction.

Second Solution: Define $\phi: \mathbb{C} \to \mathbb{R}$ as $\phi(z) = |z|$. It is clear that ϕ is an open mapping. We showed in Question 2 that f is an open mapping. Composition of open mappings being open, the map $(\phi \circ f)$ is open. Hence $(\phi \circ f)(z) = |f(z)|$ cannot attain a maximum for $z \in U$.