Bilkent University

Exam \# 01
Math 430 Introduction to Complex Geometry
Due: 12 March 2020
Instructor: Ali Sinan Sertöz

Solution Key

Q-1) Let $F_{n}=\{x+i y \in \mathbb{C} \mid-\infty<x<\infty, \quad(2 n-1) \pi<y<(2 n+1) \pi\}$, where $n \in \mathbb{Z}$. Also let $G=\mathbb{C} \backslash\{x+i y \in \mathbb{C} \mid y=0, x \leq 0\}$, where \backslash denotes subtraction of sets.
Define a map $\exp : \mathbb{C} \rightarrow \mathbb{C}$ by $\exp (z)=e^{x} \cos y+i e^{x} \sin y$.
(i) Show that exp is analytic.
(ii) Show that exp is the unique analytic extension to \mathbb{C} of the real analytic function e^{x}.
(iii) Show that $\exp : F_{n} \rightarrow G$ is one-to-one and onto.
(iv) Define an inverse of $\exp : F_{n} \rightarrow G$ for each n. It is easier to describe the inverse function using polar coordinates in G.
(v) Show that each of the above inverses, which we call a branch of the log function, is analytic. It is again easier here to use the polar version of the Cauchy-Riemann equations.

Solution:

(i) Here $u=e^{x} \cos y$ and $v=e^{x} \sin y$. One checks immediately that the Cauchy-Riemann equations $u_{x}=v_{y}$ and $u_{y}=-v_{x}$ are satisfied at every point of \mathbb{C}. Hence exp is analytic everywhere.
(ii) Let $g(z)$ be another analytic extension of the real analytic e^{x}. Then $\exp z$ and $g(z)$ agree at every point of the real line, i.e. the entire function $\exp z-g(z)$ has a zero set with accumulation points, and hence is identically zero. This shows that there can be only one extension to \mathbb{C} of any real analytic function.
(iii) For notational convenience let $f(z)=\exp z, z \in F_{n}$.

If $f\left(z_{1}\right)=f\left(z_{2}\right)$ for some $z_{1}=x_{1}+i y_{1}, z_{2}=x_{2}+i y_{2}$ in F_{n}, then in particular $\left|f\left(z_{1}\right)\right|=\left|f\left(z_{2}\right)\right|$ which gives $e^{x_{1}}=e^{x_{2}}$. Since the real exponential function is one-to-one, we get $x_{1}=x_{2}$. We then have $\cos y_{1}+i \sin y_{1}=\cos y_{2}+i \sin y_{2}$. Forcing $(2 n-1) \pi<y_{1}, y_{2}<(2 n+1) \pi$ gives us $y_{1}=y_{2}$. Hence the injectivity of f on F_{n}.

For the surjectivity, let $\alpha \in G$. Then in polar coordinates we can write $\alpha=r e^{i \theta}$ where $-\pi<\theta<\pi$ and $r=|\alpha|>0$. Then $\exp ((\ln r)+i(\theta+2 n \pi))=\alpha$, giving us the surjectivity.
(iv) For $\alpha=r e^{i \theta}$ in polar coordinates in G, define $\log \alpha=\ln r+i(\theta+2 n \pi)$. This is the required inverse of \exp on F_{n}.
(v) Here we use the polar form of the Cauchy-Riemann equations: $u_{r}=\frac{1}{r} v_{\theta}, v_{r}=-\frac{1}{r} u_{\theta}$. Here $u=\ln r$ and $v=\theta+2 n \pi$. And the Cauchy-Riemann equations are clearly satisfied everywhere on the domain.

Q-2) Let $f(w)=f(s, t)$ where $w=s+i t$, and $g(z)=g(x, y)$ where $z=x+i y$ be two C^{∞} functions of the real variables s, t and x, y respectively. Assume that $\phi(z)=(f \circ g)(z)$ is defined. Show that

$$
\frac{\partial \phi}{\partial z}=\frac{\partial f}{\partial w} \frac{\partial g}{\partial z}+\frac{\partial f}{\partial \bar{w}} \frac{\partial \bar{g}}{\partial z},
$$

and

$$
\frac{\partial \phi}{\partial \bar{z}}=\frac{\partial f}{\partial w} \frac{\partial g}{\partial \bar{z}}+\frac{\partial f}{\partial \bar{w}} \frac{\partial \bar{g}}{\partial \bar{z}},
$$

where the derivatives of f are evaluated at $w=g(z)$.

Solution:

This is a straightforward tedious calculation. I will show how to do the calculations only for the first part. The second part is done in an identical manner.

Let $f(w)=u(s, t)+i v(s, t)$, where $w=s+i t$, and let $g(z)=\alpha(x, y)+i \beta(x, y)$ where $z=x+i y$.
We define $\phi(z)=(f \circ g)(z)=u(\alpha(x, y), \beta(x, y))+i v(\alpha(x, y), \beta(x, y))$.
Then $\phi_{x}=u_{s} \alpha_{x}+u_{t} \beta_{x}+i v_{s} \alpha_{x}+i v_{t} \beta_{x}$, and similarly $\phi_{y}=u_{s} \alpha_{y}+u_{t} \beta_{y}+i v_{s} \alpha_{y}+i v_{t} \beta_{y}$.
By definition we have

$$
\begin{aligned}
\phi_{z} & =\frac{1}{2}\left(\phi_{x}-i \phi_{y}\right) \\
& =\frac{1}{2}\left(u_{s} \alpha_{x}+u_{t} \beta_{x}+v_{s} \alpha_{y}+v_{t} \beta_{y}\right)+\frac{i}{2}\left(v_{s} \alpha_{x}+v_{t} \beta_{x}-u_{s} \alpha_{y}-u_{t} \beta_{y}\right)
\end{aligned}
$$

On the other hand we have

$$
\begin{aligned}
f_{w} g_{z}+f_{\bar{w}} \bar{g}_{z}= & \frac{1}{4}\left(f_{s}-i f_{t}\right)\left(g_{x}-i g_{y}\right)+\frac{1}{4}\left(f_{s}+i f_{t}\right)\left(\bar{g}_{x}-i \bar{g}_{y}\right) \\
= & \left.\frac{1}{4}\left(u_{s}+i v_{s}-i u_{t}+v_{t}\right)\left(\alpha_{x}+i \beta_{x}\right)-i \alpha_{y}+\beta_{y}\right) \\
& \left.+\frac{1}{4}\left(u_{s}+i v_{s}\right)+i u_{t}-v_{t}\right)\left(\alpha_{x}-i \beta_{x}-i \alpha_{y}-\beta_{y}\right) \\
= & \frac{1}{2}\left(u_{s} \alpha_{x}+u_{t} \beta_{x}+v_{s} \alpha_{y}+v_{t} \beta_{y}\right)+\frac{i}{2}\left(v_{s} \alpha_{x}+v_{t} \beta_{x}-u_{s} \alpha_{y}-u_{t} \beta_{y}\right) .
\end{aligned}
$$

This gives the required equality. The other part is similar.
Q-3) Let $f\left(w_{1}, \ldots, w_{n}\right)$ be a C^{∞} function of the real variables $s_{1}, t_{1}, \ldots, s_{n}, t_{n}$ where each $w_{k}=$ $s_{k}+i t_{k}$. Assume further that each $w_{k}=g_{k}\left(z_{1}, \ldots, z_{m}\right)$ is a C^{∞} function of the real variables $x_{1}, y_{1}, \ldots, x_{m}, y_{m}$, where each $z_{j}=x_{j}+i y_{j}$.
Using the previous result, give a convincing argument that for each $j=1, \ldots, m$,

$$
\frac{\partial f \circ g}{\partial z_{j}}=\sum_{k=1}^{n} \frac{\partial f}{\partial w_{k}} \frac{\partial g_{k}}{\partial z_{j}}+\sum_{k=1}^{n} \frac{\partial f}{\partial \bar{w}_{k}} \frac{\partial \bar{g}_{k}}{\partial z_{j}},
$$

and

$$
\frac{\partial f \circ g}{\partial \bar{z}_{j}}=\sum_{k=1}^{n} \frac{\partial f}{\partial w_{k}} \frac{\partial g_{k}}{\partial \bar{z}_{j}}+\sum_{k=1}^{n} \frac{\partial f}{\partial \bar{w}_{k}} \frac{\partial \bar{g}_{k}}{\partial \bar{z}_{j}},
$$

where each derivative of f is evaluated at $\left(g_{1}(z), \ldots, g_{n}(z)\right)$.

This is elementary but extremely tedious. The crucial part of the solution is to get the notation right. First observe that we can take $m=1$ since the required equalities are calculated for single z_{j} while the other z are kept constant. Also we can take $n=2$ since once we know how to pass from one variable to two variables, the rest will just be a matter of notation.

Then we can write:
(I) $f\left(w_{1}, w_{2}\right)=u\left(s_{1}, t_{1}, s_{2}, t_{2}\right)+i v\left(s_{1}, t_{1}, s_{2}, t_{2}\right)$.
(II) $g_{k}(z)=\alpha_{k}(x, y)+i \beta_{k}(x, y), k=1,2$.
(III) $\phi(z)=f\left(g_{1}(z), g_{2}(z)\right)=u\left(\alpha_{1}(x, y), \beta_{1}(x, y), \alpha_{2}(x, y), \beta_{2}(x, y)\right)$

Since each of $\phi_{z}, f_{w_{k}}$ and g_{z} ermsof are written in the real variables, the problem reduces to calculating the both sides of the claim using the real Calculus chain rule and simplifying as in the second question.

