Bilkent University

Exam \# 01

Math 430 Introduction to Complex Geometry
Due: 12 March 2020
Instructor: Ali Sinan Sertöz

Name \& Lastname: \qquad
Student ID:

Q-1) Let $F_{n}=\{x+i y \in \mathbb{C} \mid-\infty<x<\infty, \quad(2 n-1) \pi<y<(2 n+1) \pi\}$, where $n \in \mathbb{Z}$. Also let $G=\mathbb{C} \backslash\{x+i y \in \mathbb{C} \mid y=0, x \leq 0\}$, where \backslash denotes subtraction of sets.
Define a map $\exp : \mathbb{C} \rightarrow \mathbb{C}$ by $\exp (z)=e^{x} \cos y+i e^{x} \sin y$.
(i) Show that exp is analytic.
(ii) Show that exp is the unique analytic extension to \mathbb{C} of the real analytic function e^{x}.
(iii) Show that $\exp : F_{n} \rightarrow G$ is one-to-one and onto.
(iv) Define an inverse of $\exp : F_{n} \rightarrow G$ for each n. It is easier to describe the inverse function using polar coordinates in G.
(v) Show that each of the above inverses, which we call a branch of the \log function, is analytic. It is again easier here to use the polar version of the Cauchy-Riemann equations.

Q-2) Let $f(w)=f(s, t)$ where $w=s+i t$, and $g(z)=g(x, y)$ where $z=x+i y$ be two C^{∞} functions of the real variables s, t and x, y respectively. Assume that $\phi(z)=(f \circ g)(z)$ is defined. Show that

$$
\frac{\partial \phi}{\partial z}=\frac{\partial f}{\partial w} \frac{\partial g}{\partial z}+\frac{\partial f}{\partial \bar{w}} \frac{\partial \bar{g}}{\partial z},
$$

and

$$
\frac{\partial \phi}{\partial \bar{z}}=\frac{\partial f}{\partial w} \frac{\partial g}{\partial \bar{z}}+\frac{\partial f}{\partial \bar{w}} \frac{\partial \bar{g}}{\partial \bar{z}},
$$

where the derivatives of f are evaluated at $w=g(z)$.
Q-3) Let $f\left(w_{1}, \ldots, w_{n}\right)$ be a C^{∞} function of the real variables $s_{1}, t_{1}, \ldots, s_{n}, t_{n}$ where each $w_{k}=$ $s_{k}+i t_{k}$. Assume further that each $w_{k}=g_{k}\left(z_{1}, \ldots, z_{m}\right)$ is a C^{∞} function of the real variables $x_{1}, y_{1}, \ldots, x_{m}, y_{m}$, where each $z_{j}=x_{j}+i y_{j}$.
Using the previous result, give a convincing argument that for each $j=1, \ldots, m$,

$$
\frac{\partial f \circ g}{\partial z_{j}}=\sum_{k=1}^{n} \frac{\partial f}{\partial w_{k}} \frac{\partial g_{k}}{\partial z_{j}}+\sum_{k=1}^{n} \frac{\partial f}{\partial \bar{w}_{k}} \frac{\partial \bar{g}_{k}}{\partial z_{j}},
$$

and

$$
\frac{\partial f \circ g}{\partial \bar{z}_{j}}=\sum_{k=1}^{n} \frac{\partial f}{\partial w_{k}} \frac{\partial g_{k}}{\partial \bar{z}_{j}}+\sum_{k=1}^{n} \frac{\partial f}{\partial \bar{w}_{k}} \frac{\partial \bar{g}_{k}}{\partial \bar{z}_{j}},
$$

where each derivative of f is evaluated at $\left(g_{1}(z), \ldots, g_{n}(z)\right)$.

