

Exam # 01 Math 430 Introduction to Complex Geometry Due: 12 March 2020 Instructor: Ali Sinan Sertöz

	Name & Lastname:
Department:	Student ID:

Q-1) Let $F_n = \{x + iy \in \mathbb{C} \mid -\infty < x < \infty, (2n-1)\pi < y < (2n+1)\pi \}$, where $n \in \mathbb{Z}$. Also let $G = \mathbb{C} \setminus \{x + iy \in \mathbb{C} \mid y = 0, x \le 0\}$, where \setminus denotes subtraction of sets. Define a map $\exp : \mathbb{C} \to \mathbb{C}$ by $\exp(z) = e^x \cos y + ie^x \sin y$.

- (i) Show that exp is analytic.
- (ii) Show that exp is the unique analytic extension to \mathbb{C} of the real analytic function e^x .
- (iii) Show that $exp : F_n \to G$ is one-to-one and onto.
- (iv) Define an inverse of $exp : F_n \to G$ for each n. It is easier to describe the inverse function using polar coordinates in G.
- (v) Show that each of the above inverses, which we call a branch of the log function, is analytic. It is again easier here to use the polar version of the Cauchy-Riemann equations.
- **Q-2)** Let f(w) = f(s,t) where w = s + it, and g(z) = g(x,y) where z = x + iy be two C^{∞} functions of the real variables s, t and x, y respectively. Assume that $\phi(z) = (f \circ g)(z)$ is defined. Show that

$$\frac{\partial \phi}{\partial z} = \frac{\partial f}{\partial w} \frac{\partial g}{\partial z} + \frac{\partial f}{\partial \bar{w}} \frac{\partial \bar{g}}{\partial z},$$

and

$$\frac{\partial \phi}{\partial \bar{z}} = \frac{\partial f}{\partial w} \frac{\partial g}{\partial \bar{z}} + \frac{\partial f}{\partial \bar{w}} \frac{\partial \bar{g}}{\partial \bar{z}},$$

where the derivatives of f are evaluated at w = g(z).

Q-3) Let $f(w_1, \ldots, w_n)$ be a C^{∞} function of the real variables $s_1, t_1, \ldots, s_n, t_n$ where each $w_k = s_k + it_k$. Assume further that each $w_k = g_k(z_1, \ldots, z_m)$ is a C^{∞} function of the real variables $x_1, y_1, \ldots, x_m, y_m$, where each $z_j = x_j + iy_j$.

Using the previous result, give a convincing argument that for each j = 1, ..., m,

$$\frac{\partial f \circ g}{\partial z_j} = \sum_{k=1}^n \frac{\partial f}{\partial w_k} \frac{\partial g_k}{\partial z_j} + \sum_{k=1}^n \frac{\partial f}{\partial \overline{w}_k} \frac{\partial \overline{g}_k}{\partial z_j},$$

and

$$\frac{\partial f \circ g}{\partial \,\overline{z}_j} = \sum_{k=1}^n \frac{\partial f}{\partial w_k} \frac{\partial g_k}{\partial \,\overline{z}_j} + \sum_{k=1}^n \frac{\partial f}{\partial \,\overline{w}_k} \frac{\partial \,\overline{g}_k}{\partial \,\overline{z}_j},$$

where each derivative of f is evaluated at $(g_1(z), \ldots, g_n(z))$.