Bilkent University

Math 430 Introduction to Complex Geometry
Due: 20 April 2020
Instructor: Ali Sinan Sertöz

Solution Key

Q-1) In this question we are using the notation of the Hard Lefschetz Theorem, [Griffiths-Harris, PAG, p122].
Here is a reminder about the notation.
M is a compact, complex, Hermitian manifold of complex dimension n.
$L: A^{p}(M) \rightarrow A^{p+2}(M)$, where $L(\alpha)=\alpha \wedge \omega$, with $\alpha \in A^{p}(M)$ and ω is the associated (1,1)form of the metric of M.
$\Lambda: A^{p}(M) \rightarrow A^{p-2}(M)$ is the adjoint of L.
$h: A^{*}(M) \rightarrow A^{*}(M)$, where if $\alpha=\sum_{p=0}^{2 n} \alpha_{p}$, with $\alpha_{p} \in A^{p}(M)$, then $h(\alpha)=\sum_{p=0}^{2 n}(n-p) \alpha_{p}$. Recal that we have the relations,

$$
[\Lambda, L]=h, \quad[h, L]=-2 L, \quad[h, \Lambda]=2 \Lambda .
$$

(a) Show that for any positive integer m, we have

$$
\left[\Lambda, L^{m}\right]=m h L^{m-1}+m(m-1) L^{m-1}
$$

where L^{0} is defined as the identity map. In fact you can simplify this expression as

$$
\left[\Lambda, L^{m}\right](\alpha)=m(n-k-m+1) L^{m-1}(\alpha)
$$

where $\alpha \in A^{k}(M)$.
(b) Show that for any $\alpha \in H^{n-k}(M)$, we have $L^{k+1}(\alpha)=0$ if and only if $\Lambda(\alpha)=0$.

Solution

(a) We do this by induction. The $m=1$ case is already given. Assume for m and check for $m+1$.

We will use the above given identities as $\Lambda L=h+L \Lambda$ and $L h=h L+2 L$.

$$
\begin{aligned}
{\left[\Lambda, L^{m+1}\right] } & =\Lambda L^{m+1}-L^{m+1} \Lambda \\
& =(\Lambda L) L^{m}-L^{m+1} \Lambda \\
& =(h+L \Lambda) L^{m}-L^{m+1} \Lambda \\
& =h L^{m}+L\left(\Lambda L^{m}-L^{m} \Lambda\right) \\
& =h L^{m}+L\left(m h L^{m-1}+m(m-1) L^{m-1}\right) \\
& =h L^{m}+m(L h) L^{m-1}+m(m-1) L^{m} \\
& =h L^{m}+m(h L+2 L) L^{m-1}+m(m-1) L^{m} \\
& =(m+1) h L^{m}+(m+1) m L^{m},
\end{aligned}
$$

as required.
Moreover, if $\alpha \in H^{n-k}(M)$, then $L^{m-1} \alpha \in H^{k+2 m-2}(M)$.

Then $h L^{m-1} \alpha=(n-k-2 m+2) L^{m-1} \alpha$, and hence

$$
\begin{aligned}
{\left[\Lambda, L^{m}\right] \alpha } & =m h L^{m-1} \alpha+m(m-1) L^{m-1} \alpha \\
& =m(n-k-2 m+2) L^{m-1} \alpha+m(m-1) L^{m-1} \alpha \\
& =m(n-k-m+1) L^{m-1} \alpha
\end{aligned}
$$

where $\alpha \in A^{k}(M)$.
(b) This can be proved in several ways since there are numerous Kahler identities to use. Here I give a simple proof using the facts that

$$
L^{k+2}: H^{n-k-2}(M) \rightarrow H^{n+k+2}(M)
$$

and its adjoint

$$
\Lambda^{k+2}: H^{n+k+2}(M) \rightarrow H^{n-k-2}(M)
$$

are isomorphisms by the Hard Lefschetz Theorem.
Now let $\alpha \in H^{n-k}(M)$. By part (a) we have

$$
\left[\Lambda, L^{k+1}\right] \alpha=(k+1) \overbrace{(n-(n-k)-(k+1)+1)}^{0} L^{k} \alpha=0 .
$$

Thus we have

$$
\Lambda L^{k+1} \alpha=L^{k+1} \Lambda \alpha
$$

First assume that $L^{k+1} \alpha=0$. This gives $L^{k+1} \Lambda \alpha=0$. Acting with L on this gives $L^{k+2} \Lambda \alpha=0$, and since here L^{k+2} is an isomorphism, we get $\Lambda \alpha=0$.

Conversely if $\Lambda \alpha=0$, then we get $\Lambda L^{k+1}=0$. Acting on this with Λ^{k+1} gives $\Lambda^{k+2} L^{k+1} \alpha=0$. Now again, since Λ^{k+2} is an isomorphism, we get $L^{k+1} \alpha=0$.

