Math 431 ALGEBRAIC GEOMETRY
 Homework 1 Solution Key

Exercise 4.3 page 17) Prove that there are no holomorphic differentials on the Riemann sphere except the trivial one.

Let ω be a holomorphic differential, fix a point $q \in S$ and consider the function

$$
f(p)=\int_{q}^{p} \omega, \text { for } p \in S
$$

The path taken from q to p is not important since for any two such paths the integral over their sum is zero by Stokes' theorem (Theorem 4.6 page 17). Thus f is a well defined function which is holomorphic since it is the integral of a holomorphic form. This last observation can be checked directly: let $\omega=(u+i v)(d x+i d y)$ and $f=U+i V$. Then you can easily verify Cauchy-Riemann equations for f assuming $u+i v$ satisfies them. Here we are of course using a local coordinate chart together with the information that S can be covered by two charts. Finally f being a holomorphic function on a compact space must be constant, so $d f=0$, but from its definition $d f=\omega$. So $\omega=0$.

Exercise 7.1 page 31) Verify that all automorphisms of \mathbb{P}^{1} are of the form

$$
f(z)=\frac{a z+b}{c z+d} \quad \text { with } \quad a d-b c \neq 0
$$

Since f is an automorphism it is one-to-one so it has only one pole and that is a simple pole. We have two cases:
Case-1) f is holomorphic on \mathbb{C} with a simple pole at infinity. In this case f is entire, has a power series expansion around the origin with infinite radius of convergence. Substituting $1 / t$ for z gives the power series expansion around $t=0$ which corresponds to the expansion of f at infinity. Since f has a pole of order one at infinity, the new expansion must have a pole of order one at $t=0$. This forces f to be linear, $f(z)=a z+b$, where $a \neq 0$ since f cannot be constant.
Case-2) f has a simple pole at $z=\alpha$ and is holomorphic everywhere else including infinity. Then the Laurent expansion of f around α is of the form

$$
f(z)=\frac{a_{-1}}{z-\alpha}+a_{0}+a_{1}(z-\alpha)+a_{2}(z-\alpha)^{2}+\cdots
$$

Since f is holomorphic at infinity, $f(1 / t)$ must be holomorphic at $t=0$. This forces $a_{i}=0$ for all $i>0$. So f is of the form

$$
f(z)=\frac{a_{0} z+\left(a_{-1}-a_{0} \alpha\right)}{z-\alpha}
$$

In both cases f is of the form

$$
f(z)=\frac{a z+b}{c z+d}
$$

and since f is invertible we must have $a d-b c \neq 0$.

