1) Exercise 8.3 page 93: Show in particular that s is a ramification point of $f(x)$ of multiplicity k if and only if s is a root of $f^{\prime}(x)$ of multiplicity $k-1$.

Assume that s is a ramification point of f with index k. Then $f(x)-f(s)=(x-s)^{k} g(x)$ with $g(s) \neq 0$. Now $f^{\prime}(x)=(x-s)^{k-1} h(x)$ where $h(x)=k g(x)+(x-s) g^{\prime}(x)$. Note that $h(s)=s g(s) \neq 0$, so s is a root of $f^{\prime}(x)$ with multiplicity $k-1$.

Conversely assume that s is a root of $f^{\prime}(x)$ with multiplicity $k-1$. Let $f(x)-f(s)=(x-s)^{t} g(x)$ for some integer $t \geq 0$ and some polynomial $g(x)$ with $g(s) \neq 0$. Then $f^{\prime}(x)=(x-s)^{t-1} h(x)$, where $h(x)=t g(x)+(x-s) g^{\prime}(x)$. Note that $h(s)=t g(s) \neq 0$. This gives s as a root of $f^{\prime}(x)$ with multiplicity $t-1$, so $t=k$ and s is a ramification point of $f(x)$ with index k.

Another solution for this second part, which was popular on the homework papers is the following: Let $f^{\prime}(x)=(x-s)^{k-1} h(x)$ with $h(s) \neq 0$. Let the degree of h be $m . f(x)-f(s)=$ $\int_{s}^{x}(z-s)^{k-1} h(z) d z$. Using integration by parts m times we get $f(x)-f(s)=\frac{1}{k}(x-s)^{k} h(x)-$ $\frac{1}{k} \frac{1}{k+1}(x-s)^{k+1} h^{\prime \prime}(x)+\cdots \pm \frac{1}{k} \frac{1}{k+1} \cdots \frac{1}{k+m-1}(x-s)^{k+m} h^{(m)}(x)$. From here it follows immediately that s is a ramification point of $f(x)$ with index k.

To check the answer with the Riemann-Hurwitz formula let R be the ramification divisor of f where we consider f as a holomorphic mapping from \mathbb{P}^{1} to \mathbb{P}^{1}. Clearly ∞ is a ramification point with index $n-1$ where $n=\operatorname{deg} f$. Assume that $R=(n-1) \infty+\sum_{i=1}^{r} m_{i} p_{i}$. The above argument shows that $f^{\prime}(x)=\left(x-p_{1}\right)^{m_{1}} \cdots\left(x-p_{r}\right)^{m_{r}}$. We now have $m_{1}+\cdots+m_{r}=\operatorname{deg} f^{\prime}=n-1$. Thus we find the degree of the ramification divisor as $2(n-1)$. On the other hand the RiemannHurwitz formula gives $\operatorname{deg} R=2\left(g+n-g^{\prime} n-1\right)$, which gives $2(n-1)$ after substituting $g=g^{\prime}=0$.

2) Exercise 7.5 page 89: If an nth degree curve has $\left[\frac{n}{2}\right]+1$ singular points on a straight line L, then L is necessarily a curve component of this curve.

By Bezout's theorem $\sum_{p \in C \cap L}(L \cdot C)_{p}=\operatorname{deg} L \cdot \operatorname{deg} C=n$. On the other hand $\sum_{p \in C \cap L}(L \cdot C)_{p}=$ $\sum_{p \in C \cap L, p \text { singular }}(L \cdot C)_{p}+\sum_{p \in C \cap L, p \text { smooth }}(L \cdot C)_{p} \geq \sum_{p \in C \cap L, p \text { singular }}(L \cdot C)_{p} \geq 2\left(\left[\frac{n}{2}\right]+1\right)>n$, since each $(L \cdot C)_{p} \geq 2$ when p is singular on C. But this contradicts Bezout's theorem. So L must be a component of C. For the proof of $(L \cdot C)_{p} \geq 2$ when p is singular, see either the definition 7.3 on page 83 , or see the hint to exercise 7.3 on page 85 .
3) Show that every smooth algebraic plane curve C is irreducible.

Let C be the zero set of the polynomial f. Suppose C is not irreducible. Then $f=g h$ for some nontrivial polynomials g and h. The curves $V(g)$ and $V(h)$ intersect at a point p in \mathbb{P}^{2}. Let x and y be the affine coordinates at p. Then we have $f(x, y)=g(x, y) h(x, y)$ and $\frac{\partial f}{\partial x}(p)=\frac{\partial g}{\partial x}(p) h(p)+\frac{\partial h}{\partial x}(p) g(p)=0$ since p is both on $V(g)$ and $V(h)$. Similarly $\frac{\partial f}{\partial y}(p)=0$. But this means that p is a singular point of C contradicting the fact that C is smooth. So C must be irreducible.

