Math 431 ALGEBRAIC GEOMETRY
 Midterm Exam
 Solution Key

1) Find necessary and sufficient conditions on a and b, where $a, b \in \mathbb{C}$, so that the the equation

$$
f(x, y)=y^{2}-4 x^{3}-a x-b=0
$$

represents a smooth curve in \mathbb{C}^{2}.

This is Exercise 9.1 on page 37.
The curve, call it C, is singular at the point (x, y) if and only if the system of equations

$$
\begin{aligned}
f(x, y) & =y^{2}-4 x^{3}-a x-b=0 \\
f_{x}(x, y) & =-12 x^{2}-a=0 \\
f_{y}(x, y) & =2 y=0
\end{aligned}
$$

has a solution. The last equation forces $y=0$ and the existence of a simultaneous solution for the first two equations is equivalent for the polynomial $g(x)=4 x^{3}+a x+b$ to have a multiple root. This is the case when $\mathcal{D}(g)=\mathcal{R}\left(g, g^{\prime}\right)=-16\left(a^{3}+27 b^{2}\right)=0$, see Corollary 2.1 on page 59. Then a necessary and sufficient condition for the curve C to be smooth is $a^{3}+27 b^{2} \neq 0$.
2) Let \mathbb{C} / Λ be a torus, and let $C_{a b}$ denote the curve in \mathbb{C}^{2} given by $y^{2}=4 x^{3}+a x+b$ where $a, b \in \mathbb{C}$. Show that $(\mathbb{C} / \Lambda) \backslash\{[0]\}$ is isomorphic to a curve $C_{a b}$ for a suitable choice of constants a and b, where $[0]$ denotes the equivalence class of $0 \in \mathbb{C}$.

This is Exercise 10.3 and Example 2 on page 49.
Weierstrass \wp function and its derivative satisfy an equation of the form $\wp^{\prime 2}=4 \wp^{3}+a \wp+b$ for some $a, b \in \mathbb{C}$, where the constants a and b depend on the lattice Λ. There is a map

$$
\begin{aligned}
f: \mathbb{C} / \Lambda & \longrightarrow \mathbb{P}^{2} \\
{[z] } & \longmapsto\left[\wp(z): \wp^{\prime}(z): 1\right]
\end{aligned}
$$

with the understanding that [0] maps to a point at infinity, $[0: 1: 0]$. The equation between \wp and \wp^{\prime} ensures that the image of this map outside [0] is the curve $C_{a b}$.
3) Show that any two plane algebraic curves in \mathbb{P}^{2} intersect. Use this to show that $\mathbb{P}^{1} \times \mathbb{P}^{1}$ cannot be isomorphic to \mathbb{P}^{2}.

This requires Theorem 2.2 on page 58 .
Let $F(X, Y, Z)$ and $G(X, Y, Z)$ be the homogeneous polynomials giving the two algebraic plane curves. By a linear change of variables of the form $X \mapsto X, Y \mapsto Y+\lambda X$ and $Z \mapsto Z+\lambda X$, and choosing λ suitably, we can assume that F and G are written as

$$
\begin{aligned}
& F(X, Y, Z)=X^{n}+a_{1} X^{n-1}+\cdots+a_{n} \\
& G(X, Y, Z)=X^{m}+b_{1} X^{m-1}+\cdots+b_{m}
\end{aligned}
$$

where $a_{i}=a_{i}(Y, Z)$ and $b_{i}=b_{i}(Y, Z)$ are homogeneous of degree i, if not zero. Considering F and G as polynomials in X, let R denote their Sylvester matrix; i.e. $\operatorname{det} R=\mathcal{R}(F, G)(Y, Z)$ is their resultant. We are assuming that F and G have no common components, so $\operatorname{det} R \not \equiv 0$. To fix our notation, we write R as

$$
R=\underbrace{\left(\begin{array}{llllllll}
1 & 0 & \cdots & 0 & 1 & 0 & \cdots & 0 \\
a_{1} & 1 & \cdots & 0 & b_{1} & 1 & \cdots & 0 \\
a_{2} & a_{1} & \cdots & 0 & b_{2} & b_{1} & \cdots & 0 \\
\vdots & \vdots & & \vdots & \vdots & & \vdots & \\
0 & 0 & \cdots & a_{n} & \underbrace{0}_{n} & 0 & \cdots & b_{m}
\end{array}\right) .}_{m}
$$

If we adopt the convention that

$$
\begin{aligned}
a_{t} & \equiv 0 \text { if } t<0 \text { or } t>n, \\
b_{t} & \equiv 0 \text { if } t<0 \text { or } t>m, \\
a_{0} & =1 \text { and } \\
b_{0} & =1,
\end{aligned}
$$

then we can easily describe $R=\left(R_{i j}\right)$ as

$$
R_{i j}= \begin{cases}a_{i-j} & \text { if } 1 \leq j \leq m \\ b_{i+m-j} & \text { if } m+1 \leq j \leq m+n\end{cases}
$$

Each nonzero term in the expansion of $\operatorname{det} R$ is of the form

$$
R_{\sigma}=R_{1 \sigma(1)} R_{2 \sigma(2)} \cdots R_{m+n \sigma(m+n)}
$$

where σ is a permutation on $\{1,2, \ldots, m+n\}$. We know that each $R_{i \sigma(i)}$ is either $a_{i-\sigma(i)}$ or $b_{i+m-\sigma(i)}$, if not zero. Therefore we can write the degree of R_{σ} as

$$
\begin{aligned}
\operatorname{deg} R_{\sigma} & =\sum_{\sigma(i) \leq m}(i-\sigma(i))+\sum_{\sigma(i)>m}(i+m-\sigma(i)) \\
& =\sum_{i=1}^{m+n} i-\sum_{i=1}^{m+n} \sigma(i)+\sum_{i=m+1}^{m+n} m . \\
& =n m .
\end{aligned}
$$

We see that each term is homogeneous of the same degree. So the resultant is a homogeneous polynomial in Y and Z of degree $m n$. For any nonzero $Z_{0} \in \mathbb{C}$, the polynomial $\mathcal{R}(F, G)\left(Y, Z_{0}\right)$ has a root, say Y_{0}. This means that the polynomials $F\left(X, Y_{0}, Z_{0}\right)$ and $G\left(X, Y_{0}, Z_{0}\right)$ have a common zero, say X_{0}. Then the two curves intersect at $\left[X_{0}: Y_{0}: Z_{0}\right] \in \mathbb{P}^{2}$.

On the other hand the lines $[1: 0] \times \mathbb{P}^{1}$ and $[0: 1] \times \mathbb{P}^{1}$ in $\mathbb{P}^{1} \times \mathbb{P}^{1}$ clearly do not intersect, hence $\mathbb{P}^{1} \times \mathbb{P}^{1}$ cannot be isomorphic to \mathbb{P}^{2}.
4) Show that $y^{2}+x y+x^{n}, n>2$, is irreducible in $\mathbb{C}[x, y]$ but reducible in $\mathbb{C}\{x\}[y]$.

This is about Corollary 4.6 and its proof on pages $72-73$, and Exercise 4.1 on page 75. Using the quadratic formula

$$
y^{2}+x y+x^{n}=\left(y-\frac{x}{2}\left(1+\sqrt{1-4 x^{n-2}}\right)\right)\left(y-\frac{x}{2}\left(1-\sqrt{1-4 x^{n-2}}\right)\right) .
$$

The function $\sqrt{1-4 x^{n-2}}$ defines a holomorphic function since $n>2$ and hence has a power series expansion and is in $\mathbb{C}\{x\}$. Thus the given polynomial $y^{2}+x y+x^{n}$ is reducible in $\mathbb{C}\{x\}[y]$. This ring is a UFD and hence this is the only factorization of this polynomial here. If the polynomial is reducible in $\mathbb{C}[x, y]$, then $y^{2}+x y+x^{n}=f(x, y) g(x, y)$ with both f and g polynomials. But then this would also be the factorization in $\mathbb{C}\{x\}[y]$ where we know the factorization has no polynomial parts. Hence the polynomial is irreducible in the ring $\mathbb{C}[x, y]$.
5) Draw the tangent lines at the origin, in \mathbb{R}^{2}, for the curves
a) $x^{2} y+x y^{2}-x^{4}-y^{4}$.
b) $x^{2}-x^{4}-y^{4}$.

This requires the information on page 54 .
The tangent lines of the first curve at the origin are given by the equation $x^{2} y+x y^{2}=0$, and the second one by $x^{2}=0$, both are easy to draw.

