Date: 2 November 2002 Saturday Instructor: Ali Sinan Sertöz Time: 10:00-12:00

Math 431 ALGEBRAIC GEOMETRY Midterm Exam Solution Key

1) Find necessary and sufficient conditions on a and b, where $a, b \in \mathbb{C}$, so that the the equation

$$f(x,y) = y^2 - 4x^3 - ax - b = 0$$

represents a smooth curve in \mathbb{C}^2 .

This is Exercise 9.1 on page 37. The curve, call it C, is singular at the point (x, y) if and only if the system of equations

$$f(x,y) = y^{2} - 4x^{3} - ax - b = 0$$

$$f_{x}(x,y) = -12x^{2} - a = 0$$

$$f_{y}(x,y) = 2y = 0$$

has a solution. The last equation forces y = 0 and the existence of a simultaneous solution for the first two equations is equivalent for the polynomial $g(x) = 4x^3 + ax + b$ to have a multiple root. This is the case when $\mathcal{D}(g) = \mathcal{R}(g, g') = -16(a^3 + 27b^2) = 0$, see Corollary 2.1 on page 59. Then a necessary and sufficient condition for the curve C to be smooth is $a^3 + 27b^2 \neq 0$.

2) Let \mathbb{C}/Λ be a torus, and let $C_{a\,b}$ denote the curve in \mathbb{C}^2 given by $y^2 = 4x^3 + ax + b$ where $a, b \in \mathbb{C}$. Show that $(\mathbb{C}/\Lambda) \setminus \{[0]\}$ is isomorphic to a curve $C_{a\,b}$ for a suitable choice of constants a and b, where [0] denotes the equivalence class of $0 \in \mathbb{C}$.

This is Exercise 10.3 and Example 2 on page 49.

Weierstrass \wp function and its derivative satisfy an equation of the form ${\wp'}^2 = 4\wp^3 + a\wp + b$ for some $a, b \in \mathbb{C}$, where the constants a and b depend on the lattice Λ . There is a map

$$\begin{array}{rccc} f: \mathbb{C}/\Lambda & \longrightarrow & \mathbb{P}^2 \\ [z] & \longmapsto & [\wp(z):\wp'(z):1] \end{array}$$

with the understanding that [0] maps to a point at infinity, [0:1:0]. The equation between \wp and \wp' ensures that the image of this map outside [0] is the curve C_{ab} .

3) Show that any two plane algebraic curves in \mathbb{P}^2 intersect. Use this to show that $\mathbb{P}^1 \times \mathbb{P}^1$ cannot be isomorphic to \mathbb{P}^2 .

This requires Theorem 2.2 on page 58.

Let F(X, Y, Z) and G(X, Y, Z) be the homogeneous polynomials giving the two algebraic plane curves. By a linear change of variables of the form $X \mapsto X$, $Y \mapsto Y + \lambda X$ and $Z \mapsto Z + \lambda X$, and choosing λ suitably, we can assume that F and G are written as

$$F(X, Y, Z) = X^{n} + a_{1}X^{n-1} + \dots + a_{n}$$

$$G(X, Y, Z) = X^{m} + b_{1}X^{m-1} + \dots + b_{m}$$

where $a_i = a_i(Y, Z)$ and $b_i = b_i(Y, Z)$ are homogeneous of degree *i*, if not zero. Considering *F* and *G* as polynomials in *X*, let *R* denote their Sylvester matrix; i.e. det $R = \mathcal{R}(F, G)(Y, Z)$ is their resultant. We are assuming that *F* and *G* have no common components, so det $R \neq 0$. To fix our notation, we write *R* as

$$R = \begin{pmatrix} 1 & 0 & \cdots & 0 & 1 & 0 & \cdots & 0 \\ a_1 & 1 & \cdots & 0 & b_1 & 1 & \cdots & 0 \\ a_2 & a_1 & \cdots & 0 & b_2 & b_1 & \cdots & 0 \\ \vdots & \vdots & & \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & a_n & 0 & 0 & \cdots & b_m \end{pmatrix}$$

If we adopt the convention that

$$a_t \equiv 0 \text{ if } t < 0 \text{ or } t > n,$$

$$b_t \equiv 0 \text{ if } t < 0 \text{ or } t > m,$$

$$a_0 = 1 \text{ and}$$

$$b_0 = 1,$$

then we can easily describe $R = (R_{ij})$ as

$$R_{ij} = \begin{cases} a_{i-j} & \text{if } 1 \le j \le m, \\ b_{i+m-j} & \text{if } m+1 \le j \le m+n. \end{cases}$$

Each nonzero term in the expansion of $\det R$ is of the form

$$R_{\sigma} = R_{1 \sigma(1)} R_{2 \sigma(2)} \cdots R_{m+n \sigma(m+n)},$$

where σ is a permutation on $\{1, 2, \ldots, m+n\}$. We know that each $R_{i \sigma(i)}$ is either $a_{i-\sigma(i)}$ or $b_{i+m-\sigma(i)}$, if not zero. Therefore we can write the degree of R_{σ} as

$$\deg R_{\sigma} = \sum_{\sigma(i) \le m} (i - \sigma(i)) + \sum_{\sigma(i) > m} (i + m - \sigma(i))$$
$$= \sum_{i=1}^{m+n} i - \sum_{i=1}^{m+n} \sigma(i) + \sum_{i=m+1}^{m+n} m.$$
$$= nm.$$

We see that each term is homogeneous of the same degree. So the resultant is a homogeneous polynomial in Y and Z of degree mn. For any nonzero $Z_0 \in \mathbb{C}$, the polynomial $\mathcal{R}(F,G)(Y,Z_0)$ has a root, say Y_0 . This means that the polynomials $F(X,Y_0,Z_0)$ and $G(X,Y_0,Z_0)$ have a common zero, say X_0 . Then the two curves intersect at $[X_0:Y_0:Z_0] \in \mathbb{P}^2$.

On the other hand the lines $[1:0] \times \mathbb{P}^1$ and $[0:1] \times \mathbb{P}^1$ in $\mathbb{P}^1 \times \mathbb{P}^1$ clearly do not intersect, hence $\mathbb{P}^1 \times \mathbb{P}^1$ cannot be isomorphic to \mathbb{P}^2 .

4) Show that $y^2 + xy + x^n$, n > 2, is irreducible in $\mathbb{C}[x, y]$ but reducible in $\mathbb{C}\{x\}[y]$.

This is about Corollary 4.6 and its proof on pages 72-73, and Exercise 4.1 on page 75. Using the quadratic formula

$$y^{2} + xy + x^{n} = \left(y - \frac{x}{2}\left(1 + \sqrt{1 - 4x^{n-2}}\right)\right)\left(y - \frac{x}{2}\left(1 - \sqrt{1 - 4x^{n-2}}\right)\right).$$

The function $\sqrt{1-4x^{n-2}}$ defines a holomorphic function since n > 2 and hence has a power series expansion and is in $\mathbb{C}\{x\}$. Thus the given polynomial $y^2 + xy + x^n$ is reducible in $\mathbb{C}\{x\}[y]$. This ring is a UFD and hence this is the only factorization of this polynomial here. If the polynomial is reducible in $\mathbb{C}[x, y]$, then $y^2 + xy + x^n = f(x, y)g(x, y)$ with both f and g polynomials. But then this would also be the factorization in $\mathbb{C}\{x\}[y]$ where we know the factorization has no polynomial parts. Hence the polynomial is irreducible in the ring $\mathbb{C}[x, y]$.

5) Draw the tangent lines at the origin, in \mathbb{R}^2 , for the curves

a) $x^2y + xy^2 - x^4 - y^4$. b) $x^2 - x^4 - y^4$.

This requires the information on page 54.

The tangent lines of the first curve at the origin are given by the equation $x^2y + xy^2 = 0$, and the second one by $x^2 = 0$, both are easy to draw.