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1) Find necessary and sufficient conditions on a and b, where a, b ∈ C, so that the the equation

f(x, y) = y2 − 4x3 − ax− b = 0

represents a smooth curve in C2.

This is Exercise 9.1 on page 37.
The curve, call it C, is singular at the point (x, y) if and only if the system of equations

f(x, y) = y2 − 4x3 − ax− b = 0

fx(x, y) = −12x2 − a = 0

fy(x, y) = 2y = 0

has a solution. The last equation forces y = 0 and the existence of a simultaneous solution for
the first two equations is equivalent for the polynomial g(x) = 4x3 + ax + b to have a multiple
root. This is the case when D(g) = R(g, g′) = −16(a3 + 27b2) = 0, see Corollary 2.1 on page
59. Then a necessary and sufficient condition for the curve C to be smooth is a3 + 27b2 6= 0.

2) Let C/Λ be a torus, and let Ca b denote the curve in C2 given by y2 = 4x3 + ax + b where
a, b ∈ C. Show that (C/Λ)\{[0]} is isomorphic to a curve Ca b for a suitable choice of
constants a and b, where [0] denotes the equivalence class of 0 ∈ C.

This is Exercise 10.3 and Example 2 on page 49.
Weierstrass ℘ function and its derivative satisfy an equation of the form ℘′2 = 4℘3 + a℘ + b for
some a, b ∈ C, where the constants a and b depend on the lattice Λ. There is a map

f : C/Λ −→ P2

[z] 7−→ [℘(z) : ℘′(z) : 1]

with the understanding that [0] maps to a point at infinity, [0 : 1 : 0]. The equation between ℘
and ℘′ ensures that the image of this map outside [0] is the curve Ca b.



3) Show that any two plane algebraic curves in P2 intersect. Use this to show that P1 × P1

cannot be isomorphic to P2.

This requires Theorem 2.2 on page 58.
Let F (X, Y, Z) and G(X,Y, Z) be the homogeneous polynomials giving the two algebraic plane
curves. By a linear change of variables of the form X 7→ X, Y 7→ Y + λX and Z 7→ Z + λX,
and choosing λ suitably, we can assume that F and G are written as

F (X, Y, Z) = Xn + a1X
n−1 + · · ·+ an

G(X, Y, Z) = Xm + b1X
m−1 + · · ·+ bm

where ai = ai(Y, Z) and bi = bi(Y, Z) are homogeneous of degree i, if not zero. Considering F
and G as polynomials in X, let R denote their Sylvester matrix; i.e. det R = R(F,G)(Y, Z) is
their resultant. We are assuming that F and G have no common components, so det R 6≡ 0.
To fix our notation, we write R as

R =




1 0 · · · 0 1 0 · · · 0
a1 1 · · · 0 b1 1 · · · 0
a2 a1 · · · 0 b2 b1 · · · 0
...

...
...

...
...

0 0 · · · an 0 0 · · · bm




︸ ︷︷ ︸
m

︸ ︷︷ ︸
n

If we adopt the convention that

at ≡ 0 if t < 0 or t > n,

bt ≡ 0 if t < 0 or t > m,

a0 = 1 and

b0 = 1,

then we can easily describe R = (Rij) as

Rij =

{
ai−j if 1 ≤ j ≤ m,
bi+m−j if m + 1 ≤ j ≤ m + n.

Each nonzero term in the expansion of det R is of the form

Rσ = R1 σ(1)R2 σ(2) · · ·Rm+n σ(m+n),

where σ is a permutation on {1, 2, . . . , m + n}. We know that each Ri σ(i) is either ai−σ(i) or
bi+m−σ(i), if not zero. Therefore we can write the degree of Rσ as

deg Rσ =
∑

σ(i)≤m

(i− σ(i)) +
∑

σ(i)>m

(i + m− σ(i))

=
m+n∑
i=1

i−
m+n∑
i=1

σ(i) +
m+n∑

i=m+1

m.

= nm.

We see that each term is homogeneous of the same degree. So the resultant is a homogeneous
polynomial in Y and Z of degree mn. For any nonzero Z0 ∈ C, the polynomial R(F, G)(Y, Z0)
has a root, say Y0. This means that the polynomials F (X, Y0, Z0) and G(X, Y0, Z0) have a
common zero, say X0. Then the two curves intersect at [X0 : Y0 : Z0] ∈ P2.



On the other hand the lines [1 : 0] × P1 and [0 : 1] × P1 in P1 × P1 clearly do not intersect,
hence P1 × P1 cannot be isomorphic to P2.

4) Show that y2 + xy + xn, n > 2, is irreducible in C[x, y] but reducible in C{x}[y].

This is about Corollary 4.6 and its proof on pages 72-73, and Exercise 4.1 on page 75.
Using the quadratic formula

y2 + xy + xn =
(
y − x

2
(1 +

√
1− 4xn−2)

)(
y − x

2
(1−

√
1− 4xn−2)

)
.

The function
√

1− 4xn−2 defines a holomorphic function since n > 2 and hence has a power
series expansion and is in C{x}. Thus the given polynomial y2+xy+xn is reducible in C{x}[y].
This ring is a UFD and hence this is the only factorization of this polynomial here. If the poly-
nomial is reducible in C[x, y], then y2 +xy+xn = f(x, y)g(x, y) with both f and g polynomials.
But then this would also be the factorization in C{x}[y] where we know the factorization has
no polynomial parts. Hence the polynomial is irreducible in the ring C[x, y].

5) Draw the tangent lines at the origin, in R2, for the curves
a) x2y + xy2 − x4 − y4.
b) x2 − x4 − y4.

This requires the information on page 54.
The tangent lines of the first curve at the origin are given by the equation x2y + xy2 = 0, and
the second one by x2 = 0, both are easy to draw.


