Math 431 ALGEBRAIC GEOMETRY Midterm Exam II Solutions

1) Show that every compact Riemann surface of genus 2 is hyperelliptic.

This is proposition 5.1 on page 144, and it uses proposition 3.5 on page 134. Here is another proof: Since $\ell(K)=g=2$, there is a nonconstant function f such that $D=(f)+K \geq 0$. Clearly $D \sim K$ and $\operatorname{deg} D=\operatorname{deg} K=2 g-2=2$, so we might as well take $K=p+q$. Let f be a nonconstant function in $\mathcal{L}(K)$. If f has a pole only at p or only at q, then f gives an isomorphism between our Riemann surface and \mathbb{P}^{1}, and the genus becomes zero. Hence f has a pole at p and q, and is the required degree two map onto \mathbb{P}^{1}. (Recall the definition of hyperelliptic on page 135.)
2) For a positive integer $n \geq 2$ let X_{n} be a compact Riemann surface with the property that there is a point $p \in X_{n}$ such that $\ell(p)=n$. For each such n, describe the corresponding X_{n}.

The given condition means that there is a nonconstant function f in $\mathcal{L}(p)$. Then f is forced to have a single pole at p and be regular elsewhere. This f gives an isomorphism between X_{n} and \mathbb{P}^{1}, and hence the genus is zero. When genus is zero, $\operatorname{deg}(K-p)<0$, so $\ell(K-p)=0$. The Riemann-Roch theorem then gives $\ell(p)=2$. We conclude that $X_{2} \cong \mathbb{P}^{1}$, and X_{n} does not exist for $n>2$.
3) Let X be a compact Riemann surface of genus g, and let D be a divisor of degree 0 . Show that if $\ell(D)>0$, then $D \sim 0$. Using this or otherwise show that if E is a divisor of degree $2 g-2$ with $\ell(E)=g$, then $E \sim K$, where K denotes a canonical divisor on X.

For the first part, if $D=0$ then there is nothing further to prove. If $D \neq 0$ then D has some positive and some negative parts, so $\mathcal{L}(D)$ does not contain constants. Since $\ell(D)>0$, there is a nonconstant function f such that $F=(f)+D \geq 0 . F$ is an effective divisor linearly equivalent to D and has degree 0 . So $F=0$ and the result follows. For the second part let $D=K-E$ and apply the first part; if $E=K$, then we are done. If not, then D is a nonzero divisor of degree zero, so $\mathcal{L}(D)$ does not contain the constants. To see if it contains any other function we apply Rieamnn-Roch formula for $D=K-E$. Recalling that $\ell(K-(K-E))=\ell(E)=g$, we find from $\ell(K-E)-\ell(K-(K-E))=\operatorname{deg}(K-E)-g+1$ that $\ell(K-E)=1$. Now the first part tells us that $K-E \sim 0$, or equivalentlt $E \sim K$.
4) Let D be a divisor on a compact Riemann surface X with $\ell(D)=d+1>0$, and let f_{0}, \ldots, f_{d} be a basis of $\mathcal{L}(D)$. Define $\phi_{D}(p)=\left[f_{0}(p): \cdots: f_{d}(p)\right]$ for $p \in X$. Show that ϕ_{D} defines a map into \mathbb{P}^{d} if $\ell(D-p)=d$ for every $p \in X$. Using this or otherwise show that ϕ_{K} defines a map from X into \mathbb{P}^{g-1}, where K is a canonical divisor and $g>1$ is the genus of X.
ϕ_{D} defines map into projective space if there is no point $p \in X$ with $f_{0}(p)=\cdots=f_{d}(p)=0$. If all f_{i} 's vanish at a point p, then every f in $\mathcal{L}(D)$ also vanish at p since f_{i} 's form a basis for this vector space. This however implies that $\mathcal{L}(D-p)=\mathcal{L}(D)$. Since $\mathcal{L}(D-p)=d$, these two vector spaces cannot be the same and ϕ_{D} defines a map into projective space. For the second part use the Riemann-Roch formula to calculate $\ell(K-p) ; \ell(K-p)-\ell(K-(K-p))=\operatorname{deg}(K-p)-g+1$. Here note that $\ell(K-(K-p))=\ell(p)=1$, since any nonconstant $f \in \mathcal{L}(p)$ would give an isomorphism between X and \mathbb{P}^{1} making $g=0$. Also recall that deg $K=2 g-2$. Putting these into the Riemann-Roch formula gives $\ell(K-p)=g-1=\ell(K)-1$. Now using the first part we know that ϕ_{K} defines a map into projective space.
(see Exercise 5.4 on page 124, and also remark 3.3 on page 133.)
5) Let C be a canonical curve in \mathbb{P}^{n}, and H a hyperplane section, i.e. H is a divisor obtained by intersecting C with a hyperplane. Recall that the usual map $r: \mathbb{C}\left[x_{0}, \ldots, x_{n}\right] \rightarrow$ $\bigoplus_{k=0}^{\infty} \mathcal{L}(k H)$ is surjective. Assume that C has genus $g=5$. Show that there are three irreducible quadratic hypersurfaces Q_{1}, Q_{2}, Q_{3} in \mathbb{P}^{4} such that $C \subset Q_{1} \cap Q_{2} \cap Q_{3}$.

Since C is a canonical divisor, any hyperplane section is a canonical divisor. Then $\ell(H)=g=5$, and from the Riemann-Roch formula $\ell(k H)=(2 k-1)(g-1)=4(2 k-1)$ for $k>1$. If S^{k} denotes the space of all homogeneous polynomials in the variables x_{0}, \ldots, x_{4}, then $\operatorname{dim} S^{k}=\binom{4+k}{k}$. Since the map r is surjective, the space of homogeneous polynomials of degree k vanishing identically on C has dimension equal to $\operatorname{dim} S^{k}-\ell(k H)$. This dimension is zero for $k=1$ and three for $k=2$. The quadrics forming the basis define quadric hypersurfaces Q_{1}, Q_{2}, Q_{3} and C is in their intersection. These quadrics are irreducible since otherwise C would lie in a hyperplane which is not the case.
(see Problem 6-a on page 211, and also check the arguments on pages 148-150 for the dimension count. See the arguments on page 146 for the canonical divisor of a canonical curve. The definition of canonical curve is on page 135.)

