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Math 431 ALGEBRAIC GEOMETRY
Midterm Exam II

Solutions

1) Show that every compact Riemann surface of genus 2 is hyperelliptic.

This is proposition 5.1 on page 144, and it uses proposition 3.5 on page 134. Here is another
proof: Since `(K) = g = 2, there is a nonconstant function f such that D = (f) + K ≥ 0.
Clearly D ∼ K and deg D = deg K = 2g − 2 = 2, so we might as well take K = p + q. Let
f be a nonconstant function in L(K). If f has a pole only at p or only at q, then f gives
an isomorphism between our Riemann surface and P1, and the genus becomes zero. Hence f
has a pole at p and q, and is the required degree two map onto P1. (Recall the definition of
hyperelliptic on page 135.)

2) For a positive integer n ≥ 2 let Xn be a compact Riemann surface with the property that
there is a point p ∈ Xn such that `(p) = n. For each such n, describe the corresponding Xn.

The given condition means that there is a nonconstant function f in L(p). Then f is forced
to have a single pole at p and be regular elsewhere. This f gives an isomorphism between Xn

and P1, and hence the genus is zero. When genus is zero, deg(K − p) < 0, so `(K − p) = 0.
The Riemann-Roch theorem then gives `(p) = 2. We conclude that X2

∼= P1, and Xn does not
exist for n > 2.

3) Let X be a compact Riemann surface of genus g, and let D be a divisor of degree 0. Show
that if `(D) > 0, then D ∼ 0. Using this or otherwise show that if E is a divisor of degree
2g − 2 with `(E) = g, then E ∼ K, where K denotes a canonical divisor on X.

For the first part, if D = 0 then there is nothing further to prove. If D 6= 0 then D has some
positive and some negative parts, so L(D) does not contain constants. Since `(D) > 0, there is
a nonconstant function f such that F = (f)+D ≥ 0. F is an effective divisor linearly equivalent
to D and has degree 0. So F = 0 and the result follows. For the second part let D = K − E
and apply the first part; if E = K, then we are done. If not, then D is a nonzero divisor of
degree zero, so L(D) does not contain the constants. To see if it contains any other function
we apply Rieamnn-Roch formula for D = K −E. Recalling that `(K − (K −E)) = `(E) = g,
we find from `(K −E)− `(K − (K −E)) = deg(K −E)− g + 1 that `(K −E) = 1. Now the
first part tells us that K − E ∼ 0, or equivalentlt E ∼ K.



4) Let D be a divisor on a compact Riemann surface X with `(D) = d+1 > 0, and let f0, . . . , fd

be a basis of L(D). Define φD(p) = [f0(p) : · · · : fd(p)] for p ∈ X. Show that φD defines a
map into Pd if `(D − p) = d for every p ∈ X. Using this or otherwise show that φK defines
a map from X into Pg−1, where K is a canonical divisor and g > 1 is the genus of X.

φD defines map into projective space if there is no point p ∈ X with f0(p) = · · · = fd(p) = 0. If
all fi’s vanish at a point p, then every f in L(D) also vanish at p since fi’s form a basis for this
vector space. This however implies that L(D−p) = L(D). Since L(D−p) = d, these two vector
spaces cannot be the same and φD defines a map into projective space. For the second part use
the Riemann-Roch formula to calculate `(K−p); `(K−p)−`(K−(K−p)) = deg(K−p)−g+1.
Here note that `(K − (K − p)) = `(p) = 1, since any nonconstant f ∈ L(p) would give an
isomorphism between X and P1 making g = 0. Also recall that deg K = 2g − 2. Putting these
into the Riemann-Roch formula gives `(K − p) = g − 1 = `(K) − 1. Now using the first part
we know that φK defines a map into projective space.
(see Exercise 5.4 on page 124, and also remark 3.3 on page 133.)

5) Let C be a canonical curve in Pn, and H a hyperplane section, i.e. H is a divisor ob-
tained by intersecting C with a hyperplane. Recall that the usual map r : C[x0, . . . , xn] →⊕∞

k=0 L(kH) is surjective. Assume that C has genus g = 5. Show that there are three
irreducible quadratic hypersurfaces Q1, Q2, Q3 in P4 such that C ⊂ Q1 ∩Q2 ∩Q3.

Since C is a canonical divisor, any hyperplane section is a canonical divisor. Then `(H) = g = 5,
and from the Riemann-Roch formula `(kH) = (2k−1)(g−1) = 4(2k−1) for k > 1. If Sk denotes

the space of all homogeneous polynomials in the variables x0, . . . , x4, then dim Sk =

(
4 + k

k

)
.

Since the map r is surjective, the space of homogeneous polynomials of degree k vanishing
identically on C has dimension equal to dim Sk − `(kH). This dimension is zero for k = 1
and three for k = 2. The quadrics forming the basis define quadric hypersurfaces Q1, Q2, Q3

and C is in their intersection. These quadrics are irreducible since otherwise C would lie in a
hyperplane which is not the case.
(see Problem 6-a on page 211, and also check the arguments on pages 148-150 for the dimension
count. See the arguments on page 146 for the canonical divisor of a canonical curve. The
definition of canonical curve is on page 135.)


