Math 431 ALGEBRAIC GEOMETRY Midterm Exam II Solutions

1) Show that every compact Riemann surface of genus 2 is hyperelliptic.

This is proposition 5.1 on page 144, and it uses proposition 3.5 on page 134. Here is another proof: Since $\ell(K) = g = 2$, there is a nonconstant function f such that $D = (f) + K \ge 0$. Clearly $D \sim K$ and deg $D = \deg K = 2g - 2 = 2$, so we might as well take K = p + q. Let f be a nonconstant function in $\mathcal{L}(K)$. If f has a pole only at p or only at q, then f gives an isomorphism between our Riemann surface and \mathbb{P}^1 , and the genus becomes zero. Hence fhas a pole at p and q, and is the required degree two map onto \mathbb{P}^1 . (Recall the definition of hyperelliptic on page 135.)

2) For a positive integer $n \ge 2$ let X_n be a compact Riemann surface with the property that there is a point $p \in X_n$ such that $\ell(p) = n$. For each such n, describe the corresponding X_n .

The given condition means that there is a nonconstant function f in $\mathcal{L}(p)$. Then f is forced to have a single pole at p and be regular elsewhere. This f gives an isomorphism between X_n and \mathbb{P}^1 , and hence the genus is zero. When genus is zero, $\deg(K-p) < 0$, so $\ell(K-p) = 0$. The Riemann-Roch theorem then gives $\ell(p) = 2$. We conclude that $X_2 \cong \mathbb{P}^1$, and X_n does not exist for n > 2.

3) Let X be a compact Riemann surface of genus g, and let D be a divisor of degree 0. Show that if $\ell(D) > 0$, then $D \sim 0$. Using this or otherwise show that if E is a divisor of degree 2g - 2 with $\ell(E) = g$, then $E \sim K$, where K denotes a canonical divisor on X.

For the first part, if D = 0 then there is nothing further to prove. If $D \neq 0$ then D has some positive and some negative parts, so $\mathcal{L}(D)$ does not contain constants. Since $\ell(D) > 0$, there is a nonconstant function f such that $F = (f) + D \ge 0$. F is an effective divisor linearly equivalent to D and has degree 0. So F = 0 and the result follows. For the second part let D = K - Eand apply the first part; if E = K, then we are done. If not, then D is a nonzero divisor of degree zero, so $\mathcal{L}(D)$ does not contain the constants. To see if it contains any other function we apply Rieamnn-Roch formula for D = K - E. Recalling that $\ell(K - (K - E)) = \ell(E) = g$, we find from $\ell(K - E) - \ell(K - (K - E)) = \deg(K - E) - g + 1$ that $\ell(K - E) = 1$. Now the first part tells us that $K - E \sim 0$, or equivalently $E \sim K$. 4) Let D be a divisor on a compact Riemann surface X with $\ell(D) = d+1 > 0$, and let f_0, \ldots, f_d be a basis of $\mathcal{L}(D)$. Define $\phi_D(p) = [f_0(p) : \cdots : f_d(p)]$ for $p \in X$. Show that ϕ_D defines a map into \mathbb{P}^d if $\ell(D-p) = d$ for every $p \in X$. Using this or otherwise show that ϕ_K defines a map from X into \mathbb{P}^{g-1} , where K is a canonical divisor and g > 1 is the genus of X.

 ϕ_D defines map into projective space if there is no point $p \in X$ with $f_0(p) = \cdots = f_d(p) = 0$. If all f_i 's vanish at a point p, then every f in $\mathcal{L}(D)$ also vanish at p since f_i 's form a basis for this vector space. This however implies that $\mathcal{L}(D-p) = \mathcal{L}(D)$. Since $\mathcal{L}(D-p) = d$, these two vector spaces cannot be the same and ϕ_D defines a map into projective space. For the second part use the Riemann-Roch formula to calculate $\ell(K-p)$; $\ell(K-p) - \ell(K-(K-p)) = \deg(K-p) - g + 1$. Here note that $\ell(K - (K - p)) = \ell(p) = 1$, since any nonconstant $f \in \mathcal{L}(p)$ would give an isomorphism between X and \mathbb{P}^1 making g = 0. Also recall that $\deg K = 2g - 2$. Putting these into the Riemann-Roch formula gives $\ell(K - p) = g - 1 = \ell(K) - 1$. Now using the first part we know that ϕ_K defines a map into projective space.

(see Exercise 5.4 on page 124, and also remark 3.3 on page 133.)

5) Let C be a canonical curve in \mathbb{P}^n , and H a hyperplane section, i.e. H is a divisor obtained by intersecting C with a hyperplane. Recall that the usual map $r : \mathbb{C}[x_0, \ldots, x_n] \to \bigoplus_{k=0}^{\infty} \mathcal{L}(kH)$ is surjective. Assume that C has genus g = 5. Show that there are three irreducible quadratic hypersurfaces Q_1, Q_2, Q_3 in \mathbb{P}^4 such that $C \subset Q_1 \cap Q_2 \cap Q_3$.

Since C is a canonical divisor, any hyperplane section is a canonical divisor. Then $\ell(H) = g = 5$, and from the Riemann-Roch formula $\ell(kH) = (2k-1)(g-1) = 4(2k-1)$ for k > 1. If S^k denotes

the space of all homogeneous polynomials in the variables x_0, \ldots, x_4 , then dim $S^k = \begin{pmatrix} 4+k \\ k \end{pmatrix}$. Since the map r is surjective, the space of homogeneous polynomials of degree k vanishing

identically on C has dimension equal to dim $S^k - \ell(kH)$. This dimension is zero for k = 1and three for k = 2. The quadrics forming the basis define quadric hypersurfaces Q_1, Q_2, Q_3 and C is in their intersection. These quadrics are irreducible since otherwise C would lie in a hyperplane which is not the case.

(see Problem 6-a on page 211, and also check the arguments on pages 148-150 for the dimension count. See the arguments on page 146 for the canonical divisor of a canonical curve. The definition of canonical curve is on page 135.)