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CHAPTER 1

Affine Varieties

1. First Definitions

Affine Space: We fix an algebraically closed field k. The affine n
space over k, denoted by An

k , is the set of n-tuples of elements of k,
where n is any positive integer. We generally denote An

k by An when
there is no confusion about which k is used. An is simply kn without
the k-vector space structure.

We will consider An only with polynomial functions of the form

f : An −→ A1

where f ∈ k[x1, . . . , xn].

Zero Set: For any ideal J of the polynomial ring k[x1, . . . , xn] we
define

Z(J) = {p ∈ An | f(p) = 0 for all f ∈ J }.
Every ideal in k[x1, . . . , xn] is finitely generated. If J = (f1, . . . , fr),
then we denote Z(J) also by Z(f1, . . . , fr). Clearly, for any two ideals
J1 ⊆ J2, we have Z(J1) ⊇ Z(J2).

Definition 1. A subset X of An is called an algebraic set if it is of
the form X = Z(J) for some ideal J ⊂ k[x1, . . . , xn].

Some immediate examples of algebraic sets are Z(1) = ∅, Z(x1 −
a1, . . . , xn − an) = {(a1, . . . , an)} and Z(0) = An. If k = C, then a
nonempty proper subset of An which is open with respect to the usual
metric topology is not an algebraic set.

By the Fundamental Theorem of Algebra a nonconstant polynomial
f ∈ k[x1] always has a root in k. Since k[x1] is a principal ideal do-
main, every proper ideal J in k[x1] is generated by a single nonconstant
polynomial and consequently Z(J) 6= ∅.
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6 1. AFFINE VARIETIES

However a proper ideal J in k[x1, . . . , xn] is not necessarily generated
by a single element and attempts to check if Z(J) is empty or not
using the Fundamental Theorem of Algebra above raises complicated
technical difficulties. We have nonetheless the highly nontrivial result:

Theorem 2 (Hilbert’s Nullstellensatz). If k is algebraically closed then
Z(J) 6= ∅ for every proper ideal J in k[x1, . . . , xn].

Proof. Let m be a maximal ideal containing J . Since Z(m) ⊆
Z(J), it suffices to show that Z(m) is not empty. Let

k[x1, . . . , xn] −→ k[x1, . . . , xn]/m = k[x̄1, . . . , x̄n] = K

be the usual surjection, where x̄i is xi mod m. Here K is a field and
(x̄1, . . . , x̄n) is a point of Z(m) in An

K . We want to show that this point
actually lies in An

k . We will achieve this by showing that K is in fact
k. If K is algebraic over k, then since k is algebraically closed it will
follow that K = k.

We then proceed to show that each x̄1, . . . , x̄n is algebraic over k. Here
we follow [14, p165].

If n = 1, then k[x̄1] being a field, x̄1 has an inverse, say f(x̄1). Then
x̄1f(x̄1)− 1 = 0 is an algebraic equation for x̄1 over k.

We now show how to pass from n = 1 case to n = 2 case. The field
k[x̄1, x̄2] contains the field k(x̄1)[x̄2]. By what we showed above, x̄2 is
algebraic over k(x̄1). If we can now show that x̄1 is algebraic over k,
we will be done. Assume that x̄1 is transcendental over k. Recall then
that k[x̄1] is integrally closed in k(x̄1).

Take an algebraic equation of x̄2 over k(x̄1), clear denominators and
obtain

h(x̄1)x̄
m
2 + hm−1(x̄1)x̄

m−1
2 + · · ·+ h0(x̄1) = 0

for some m > 0 and h(x̄1), hm−1(x̄1), . . . , h0(x̄1) ∈ k[x̄1]. Then (hm(x̄1)x̄2)
is integral over k[x̄1]. It follows that for every f(x̄1, x̄2) ∈ k[x̄1, x̄2] there
exists an integer r such that hr(x̄1)f(x̄1, x̄2) is integral over k[x̄1]. Since
the field k(x̄1) is in k[x̄1, x̄2], this also applies to fractions of the form
f(x̄1)/g(x̄1) where f and g are polynomials and are relatively prime.
In particular choose g to be nonconstant and also relatively prime to
h. From hr(x̄1)f(x̄1)/g(x̄1) being integral over k[x̄1] for some inte-
ger r ≥ 0 and k[x̄1] being integrally closed in k(x̄1), it follows that
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hr(x̄1)f(x̄1)/g(x̄1) is in k[x̄1] and hence g(x̄1) divides hr(x̄1) which is a
contradiction. So x̄1 is algebraic over k and consequently so is x̄2.

For the general case apply the induction hypothesis to k(x̄1)[x̄2, . . . , x̄n].
Each x̄2, . . . , x̄n is algebraic over k(x̄1). We can find a polynomial
h(x̄1) ∈ k[x̄1] and an integer m such that each (hm(x̄1)x̄i) is integral
over k[x̄1], i = 2, . . . , x̄n. This leads to a contradiction since k[x̄1] is
integrally closed in k(x̄1). ¤

Observe how k being algebraically closed is used in the proof. In fact
Z(x2

1 + x2
2 + 1) = ∅ in A2

R.

Zariski Topology: We put a new topology on An by declaring that
the collection of closed sets will consist only of algebraic sets. The
topology thus defined is called the Zariski topology.

A closed set in a topological space is called irreducible if it is not the
union of two proper nonempty closed subsets. The empty set is then
not irreducible.

The only proper irreducible subsets of A1 are singletons. Since k is
algebraically closed, A1 is infinite. This shows that A1 is irreducible.

Affine Variety: An affine algebraic set is called an affine variety if it
is irreducible in the Zariski topology.

We know so far that A1 and singletons in A1 are algebraic varieties.
We cannot yet show that An is irreducible for any n ≥ 1. Try it!

Dimension: The dimension of a set V in a topological space is defined
to be the supremum of the integers m for which there is a chain of
inclusions

V ⊇ V0 ! V1 ! · · · ! Vm

where each Vi is a closed irreducible subset.

Dimension of V is denoted by dim V or by dimk V when the reference
to k is relevant.

For any nonconstant f ∈ k[x1, . . . , xn], the algebraic set Z(f) is called
a hypersurface, and if f is linear it is called a hyperplane.

We would like to show that the dimension of An is n and to know if
it is irreducible. Moreover we expect in general that the dimension of



8 1. AFFINE VARIETIES

a hypersurface Z(f) in An is n− 1 and that it is irreducible if f is an
irreducible polynomial.

To answer such questions we must have a tool of recovering information
about the ideal from its zero set.

Ideal of a Set: When X is a subset of An define

I(X) = {f ∈ k[x1, . . . , xn] | f(p) = 0 for all p ∈ X }.
This is a radical ideal in k[x1, . . . , xn]. Clearly, for any subsets X ⊆ Y ,
we have I(X) ⊇ I(Y ).

We have the immediate relations:
(i) X ⊂ Z(I(X)) for any X ⊂ An and
(ii) J ⊂ I(Z(J)) for any ideal J ⊂ k[x1, . . . , xn].

To understand when equality holds in these inclusions we need the
following corollary to Theorem 2.

Corollary 3. If J is any ideal in k[x1, . . . , xn], then I(Z(J)) =
√

J ,

where
√

J is the radical of J .

Proof. First take any f ∈ √
J . Then f r ∈ J for some integer

r > 0 and f vanishes at every point of Z(J). Hence f ∈ I(Z(J)).

For the converse inclusion let f be in I(Z(J)). Choose a set of genera-
tors for J , say J = (f1, . . . , fm). Then f vanishes at every point where
f1, . . . , fm simultaneously vanish. Consider the ideal

J0 = (f1, . . . , fm, 1− tf) ⊂ k[x1, . . . , xn, t].

Clearly Z(J0) = ∅ in An+1 and by Theorem 2, J0 cannot be proper. So
1 ∈ J0 and there are polynomials g, g1, . . . , gm ∈ k[x1, . . . , xn, t] such
that

1 = g1f1 + · · ·+ gmfm + g · (1− tf).

In this identity substitute t = 1/f and clear denominators to obtain

f r = h1f1 + · · ·+ hmfm

where

hi = gi(x1, . . . , xn,
1

f(x1, . . . , xn)
) · f r(x1, . . . , xn)

and r is chosen to be the largest of the degrees of the gi’s in t. This
then gives f ∈ √J and establishes the equality. ¤
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We now have an inclusion reversing correspondences between radical
ideals in k[x1, . . . , xn] and algebraic sets in An.

{
Radical ideals
in k[x1, . . . , xn]

} Z−→←−
I

{
Algebraic sets

in An
k

}

Moreover these correspondences are inverses of each other. I ◦ Z is
identity on radical ideals and Z ◦ I is identity on algebraic sets.

Commutative Algebra: Let R be a finitely generated k-algebra
which is an integral domain. For example R can be k[x1, . . . , xn]/p
for a prime ideal p. The dimension of R, denoted by dim R, is defined
to be the supremum of all integers m for which there is a chain of prime
ideals of length m of the form

p0 ⊂ p1 ⊂ · · · ⊂ pm.

Every maximal chain of primes have the same length. If we denote the
transcendence degree of R over k by tr.degkR, then dim R = tr.degkR.
In particular dim k[x1, . . . , xn] = n. Moreover for any prime ideal p in
R, there is a maximal chain of primes as above where p = pi for some
i. For the proofs we refer to [4, Chapter 13].

Exercises

1. An algebraic set Z(J) is irreducible if and only if J is a prime ideal. It
follows that An is irreducible, and the hypersurface Z(f) is irreducible
if and only if f is an irreducible polynomial.

2. If X  Y are algebraic sets, then dimX < dimY .

3. The dimension of an algebraic variety Z(J) is the Krull dimension of
the ring k[x1, . . . , xn]/J . In particular dimAn = n.

4. Dimension of a hypersurface in An is n− 1.

5. For any ideal J in k[x1, . . . , xn], Z(J) is singleton if and only if J is a
maximal ideal.

6. Closure with respect to Zariski topology of a set X in An is Z(I(X)).

7. An arbitrary union of algebraic sets need not be algebraic.

8. With respect to the induced Zariski topology on an algebraic variety,
any nonempty open subset is dense.
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9. For any f ∈ k[x1, . . . , xn] let Df denote the complement of Z(f) in An.
It is called a fundamental open set. Every open subset of An can be
written as a finite union of fundamental open sets.

10. Every fundamental set is isomorphic to an affine variety. However the
union of two fundamental sets need not be isomorphic to an algebraic
set. Does this contradict with the fact that the union of two algebraic
sets is again an algebraic set?

2. Affine Morphisms

In this section X ∈ An and Y ⊂ Am are affine varieties and J denotes
the prime ideal I(X).

Polynomial Functions: A function f : X → k is called a polynomial
function if there is a polynomial F ∈ k[x1, . . . , xn] such that f(p) =
F (p) for all p ∈ X. Two polynomials F1 and F2 define the same
polynomial function on X if and only if F1 − F2 ∈ J . The set of
polynomial functions on X form a ring which we call the coordinate ring
of X. This ring is denoted by k[X]. Clearly k[X] ∼= k[x1, . . . , xn]/J .

Rational Functions: An expression of the form F/G where F,G ∈
k[x1, . . . , xn] is traditionally called a rational function on An. It is
not a function in general since it is not defined at the points where
G vanishes. However, elsewhere it defines a legitimate function. If we
define DG as An\Z(G), then F/G is a function on DG. We denote this
by

F

G
: An 99K k

where broken arrow notation warns that the domain of the function
may not be all of what is written there but is an open dense subset of
it. Here with this understanding we call F/G a rational function on
An.

A rational function on X is a function on an open dense subset of X
where it is evaluated as the restriction of a rational function of An. A
rational function φ on X is denoted by

φ : X 99K k

where the broken arrow reminds that the domain is some open dense
subset. If φ = F/G for some polynomials F, G ∈ k[x1, . . . , xn] on
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some open dense subset of X, then we agree to use F/G to denote the
rational function φ.

If F/G and F ′/G′ are rational functions on An with G,G′ 6∈ J , then
they define the same rational function on X if and only if FG′−GF ′ ∈
J .

Two rational functions are added and multiplied on their common do-
main. If φ is a rational function which is not identically zero, then 1/φ
is also a rational function on X. The set of all rational functions on X
forms a field, called the field of rational functions or the function field
of X, and is denoted by k(X).

Regular Functions: A rational function F/G on X is called regular
at p ∈ X if G(p) 6= 0. The set of all regular functions at p is a ring
denoted by Op,X , or by Op if the reference to X is clear, and is called
the ring of regular functions at p.

For any subset U of X, we say that a rational function is regular on U
if it is regular at every point of U . The set of all such functions forms
a ring which is denoted by O(U).

It follows from these definitions that

O(U) =
⋂
p∈U

Op, O({p}) = Op and k[X] ⊂ Op for all p ∈ X.

A function is regular on X if it is regular at all points of X. The nature
of such functions is given by the following theorem.

Theorem 4.

O(X) = k[X].

Proof. The inclusion k[X] ⊂ O(X) is clear. Conversely take φ ∈
O(X).

For any polynomial H ∈ k[x1, . . . , xn], let h denote the corresponding
polynomial function in k[X].

Let J0 consist of all polynomials H such that hφ is a polynomial func-
tion on X.

Clearly J0 is an ideal in k[x1, . . . , xn]. Moreover if H ∈ J , then hφ is
identically zero on X, so H ∈ J0. Thus J ⊂ J0 and Z(J0) ⊂ X.
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For every point p ∈ X, there is a rational function F/G in the equiv-
alence class of φ with G(p) 6= 0. Clearly G ∈ J0, so p 6∈ Z(J0). This
forces Z(J0) to be empty. By the nullstellensatz, 1 ∈ J0. It follows now
from the description of J0 that φ is in k[X]. ¤

Morphisms of Varieties: If X ⊂ An and Y ⊂ Am are two algebraic
varieties, then a morphism

φ : X −→ Y

is given by φ = (f1, . . . , fm) where each fi is a regular function on X,
i.e. each fi is a polynomial function on X.

Two varieties X and Y are isomorphic if there are polynomial maps
f : X −→ Y and g : Y −→ X such that f ◦ g = IdY and g ◦ f = IdX ,
where IdX and IdY denote the identity map on X and Y respectively.
In this case we call f , an also g, an isomorphism between X and Y . If
X = Y , we usually call f an automorphism.

The simplest case of an automorphism is the one on An
k . Let F =

(F1, . . . , Fn) : An
k −→ An

k be a polynomial map which is an automor-
phism. The Jacobian of this map

J
(n)
k (F ) = det(

∂Fi

∂xj

),

where xi’s are coordinates on An
k , is a polynomial and is nonzero wher-

ever F has a local inverse. Since k is algebraically closed and since F

is invertible everywhere, J
(n)
k (F ) is a nonzero constant. The converse

however is a challenge. In particular we have,

Conjecture 5 (Jacobian Conjecture). If J
(n)
C (F ) is a nonzero con-

stant, then F is an automorphism.

Biregular Theory: When f : X −→ Y is a morphism of algebraic
varieties and φ ∈ k[Y ] is a polynomial function on Y , then φ ◦ f is a
polynomial function on X and is denoted by f ∗φ. This is a k-algebra
morphism.

Conversely any k-algebra morphism α : k[Y ] −→ X on the coordinate
rings induces a map on the varieties themselves. To show this define a
map

f : X −→ Am

p 7→ (α(y1)(p), . . . , α(ym)(p)).
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We claim that f(p) is actually in Y . To show this take any G ∈ I(Y ).
Then G(f(p)) = G(α(y1)(p), . . . , α(ym)(p)) = α(G(y1, . . . , ym))(p) = 0
since G ≡ 0 in K[Y ]. This shows that f(X) ⊂ Y . It is also clear that
α = f ∗.

For two algebraic varieties X and Y , we denote the set of all morphisms
f : X −→ Y by Homk(X, Y ), and the set of all k-algebra morphisms
between their coordinate rings by Homk(k[Y ], k[X]).

Theorem 6. There is a one-to-one bijection between the sets Homk(X,Y )
and Homk(k[Y ], k[X]).

¤

This theorem is the first crucial link between algebra and geometry. In
particular two varieties are isomorphic if and only if their coordinate
rings are isomorphic.

Rational Morphisms: If X ⊆ An and Y ⊆ Am are affine varieties, a
rational morphism

φ : X 99K Y

is given by φ = (f1, . . . , fm) where each fi is a rational function on X.
Two algebraic varieties X and Y are said to be birationally equivalent,
or simply birational, if there exist rational maps f : X 99K Y and
g : Y 99K X such that f ◦ g = IdV and g ◦ f = IdU on some open sets
U ⊂ X and V ⊂ Y .

Birational Theory: Any rational map f : X 99K Y between algebraic
varieties induces through composition a field morphism f ∗k(Y ) −→
k(X). Similar to the biregular theory, any field morphism from k(Y )
to k(X) induces and is in turn induced by a rational map from X to
Y . Two varieties are birational if and only if their function fields are
isomorphic.

Exercises

1. For a morphism f : X −→ Y of varieties, f∗ is injective if and only if
f(X) is dense in Y . And if f∗ is surjective, then f is an isomorphism
of X with f(X).
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2. The function field of an algebraic variety is the field of fractions of its
coordinate ring. The transcendence degree of the function field over
the coordinate ring is equal to the dimension of the variety.

3. If p1 ⊂ k[x1, . . . , xn] and p2 ⊂ k[y1, . . . , ym] are two prime ideals, denote
by p ⊂ k[x1, . . . , xn, x1, . . . , xm] the ideal generated by p1p2. Let X =
Z(p1) ⊂ An, Y = Z(p2) ⊂ Am and W = Z(p) ⊂ An+m. Show that
the coordinate ring of W is isomorphic to k[X]⊗k k[Y ] and that W is
the product of X and Y in the category of affine varieties with affine
morphisms. We denote W by X ×k Y .

4. For an algebraic variety X and any point p ∈ X, the ring Op is a local
ring whose maximal ideal mp is the set of all regular functions in Op

vanishing at p. If ZX(p) denotes the set of all polynomial functions on
X vanishing at p, then it is a maximal ideal and Op is isomorphic to
the localization of k[X] at ZX(p).

5. If f ∈ k[x, y] is a non-degenerate quadratic polynomial and chark 6= 2,
then the coordinate ring of Z(f) ⊂ A2 is isomorphic either to the
polynomial ring k[x] or k[x, 1

x ]. What happens if chark = 2?

6. The polynomial map f : A1 −→ Z(y2 − x3) ⊂ A2, given by f(t) =
(t2, t3) is one-to-one and onto but the varieties A1 and Z(y2 − x3) are
not isomorphic.

3. Complete Intersections

Definition 7. For an ideal J in k[x1, . . . , xn] we define µ(J) to be
the number of elements in a minimal generating set for J . If X is
an algebraic set we define µ(X) as the minimum integer r such that
there exist r polynomials f1, . . . , fr with X = Z(f1, . . . , fr) We define
codim(X), the codimension of X, as n−dim(X), where the dimension
of X is its dimension in the Zariski topology of An

We immediately have the inequalities 0 ≤ codim(X) ≤ µ(X) ≤ µ(J(X)).

In A2, when C is a curve, we always have 1 = codim C = µ(C) =
µ(I(C)).

Every codimension one variety X in An is a hypersurface and neces-
sarily n− 1 = µ(X) = µ(I(X)), see [12].
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For every variety X in An, it is known that µ(X) ≤ n, see [5]. However
for any given integer m, there exists a variety X in An with µ(I(X)) ≥
m. One such variety will be discussed in the next section.

Complete Intersections: For any variety X, if µ(X) = codim X,
then X is called a set theoretical complete intersection, STCI for short.
If further µ(I(X)) = codim X, then X is an ideal theoretical complete
intersection, or ITCI. We have examples of STCI varieties which are
not ICTI.

Conjecture: It is conjectured that all curves in A3 are STCI.

4. Affine Monomial Curves

It is known that all monomial curves in A3 are STCI. However the
situation is more complicated in A4. Let C ∈ A4 be a monomial curve
associated to the integers m1, . . . , m4 where gcd(m1, . . . , m4) = 1. Let
g be the Frobenius number of the semigroup S = 〈m1, . . . , m4〉. S is
called symmetric if g− c ∈ S if and only if c ∈ N−S. It is known that
C is a STCI if and only if the semigroup 〈m1, . . . , m4〉 is symmetric.

It is an open question to describe all STCI monomial curves in An for
n > 4.





CHAPTER 2

Projective Varieties

1. First Definitions

The projective n-space over k, denoted by Pn
k , is the space of all lines

through the origin in An+1
k . We also denote it by Pn if the reference to

k is understood. To define a line ` through the origin in An+1 it suffices
to know only one point on ` other than the origin. If (x0, . . . , xn) is such
a point, then each (λx0, . . . , λxn) is also on ` and is different than the
origin for every nonzero λ in k. Thus any of these points can be used to
uniquely define `. We denote by [x0 : · · · : xn] the line passing through
(x0, . . . , xn) and the the origin in An+1 when (x0, . . . , xn) 6= (0, . . . , 0).

This defines Pn as the set of equivalence classes of points in An+1\(0, . . . , 0),

where two points p and q in An+1\(0, . . . , 0) are called equivalent if
p = λq for some nonzero λ in k. If we denote this equivalence relation
by ∼, then there is a projection

π : An+1\(0, . . . , 0) −→ Pn =
(
An+1\(0, . . . , 0)

)
/ ∼

sending each point p to its equivalence class, the line through p and
the origin.

We put on An+1\(0, . . . , 0) the induced Zariski topology, i.e. X ⊂
An+1\(0, . . . , 0) is closed if X = Y ∩ {An+1\(0, . . . , 0)} for some closed
set Y ⊂ An+1. Using this we put on Pn the quotient topology via the
above projection π, i.e. X ⊂ Pn is closed if π−1(X) ⊂ An+1\(0, . . . , 0)
is closed.

If X ⊂ Pn is a closed set and f ∈ I(π−1(X)), then f vanishes on every
line ` ⊂ π−1(X). If f = f0 + · · · + fd where each fi is homogeneous
of degree i, then it follows that each fi ∈ I(π−1(X)). Moreover of
[x0 : · · · : xn] ∈ X, then fi(x0, . . . , xn) = 0 for each i = 0, . . . , d.In
particular f0 ≡ 0 if X is not empty.

17
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These observations necessitates the following definitions but first recall
that a polynomial ideal is called homogeneous if it is generated by
homogeneous polynomials.

Zero Set: For any homogeneous ideal J in k[x0, . . . , xn] we define

Z(J) = {[p0 : · · · : pn] ∈ Pn
∣∣ f(p0, . . . , pn) = 0 for all f ∈ J }.

Generally if p = [p0 : · · · : pn], we denote f(p0, . . . , pn) by f(p). If J is
generated by the homogeneous polynomials f1, . . . , fr, then we denote
Z(J) also by Z(f1, . . . , fr). For any two homogeneous ideals J1 ⊆ J2,
we have Z(J1) ⊇ Z(J2).

Definition 8. A subset X of Pn is called an algebraic set if it is of
the form X = Z(J) for some homogeneous ideal J ⊆ k[x0, . . . , xn].

The topology defined on Pn by taking algebraic sets as the closed sets
is the same as the quotient topology defined above. We also call this
topology the Zariski topology.

Clearly Z(1) = ∅ and Z(0) = Pn are closed sets. For any point a =
[a0 : · · · : an] ∈ Pn, let J be the ideal in k[x0, . . . , xn] generated by the
set {aixj − ajxi

∣∣ 0 ≤ i, j ≤ n. }. Then Z(J) = {a}.

If J is a homogeneous ideal in k[x0, . . . , xn] then we temporarily denote
by Za(J) its zero set in An+1 and by Zp(J) its zero set in Pn. Using the
above projection we have the obvious relation π(Za(J)\(0, . . . , 0)) =
Zp(J). We usually drop these subscripts when no confusion arises.

In the affine case we had Z(J) 6= ∅ for every proper ideal. However in
the projective case a slight exception occurs. The ideal in k[x0, . . . , xn]
generated by x0, . . . , xn does not have a zero in Pn. We call this ideal
the irrelevant ideal.

Theorem 9 (Projective Nullstellensatz). If k is algebraically closed
and J is any proper homogeneous ideal in k[x0, . . . , xn] not containing
any power of the irrelevant ideal, then Z(J) 6= ∅.

Proof. Let m denote the irrelevant ideal and mr ⊆ J for some pos-
itive integer r. We have the inclusion Za(J) ⊆ Za(m

r) = {(0, . . . , 0)}.
This forces Zp(J) to be empty. If J does not contain a power of the
irrelevant ideal, then the result follows from the usual Nullstellensatz,
Theorem 2. ¤
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Projective Variety: A projective algebraic set is called a projective
variety if it is irreducible in the Zariski topology.

The dimension of an algebraic variety is defined as its dimension as a
closed set in the Zariski topology.

Ideal of a Set: When X is a subset of Pn define

I(X) = {f ∈ k[x0, . . . , xn]
∣∣ f(p) = 0 for all p ∈ X }.

This is necessarily a homogeneous radical ideal. For any subsets X ⊆
Y , we have I(X) ⊇ I(Y ).

Corollary 10. If J is any proper homogeneous ideal in k[x0, . . . , xn]

not containing any power of the irrelevant ideal, then I(Z(J)) =
√

J ,

where
√

J is the radical of J .

Proof. With minor adaptations the proof of Corollary 3 works in
this case too. ¤

We now have an inclusion reversing bijection between the homogeneous
radical ideals in k[x0, . . . , xn] other than the irrelevant ideal and the
algebraic sets in Pn.

2. Projective Morphisms

Polynomial Functions: We do not expect any nontrivial polynomial
functions on projective varieties. On one hand there is the technical
challenge of defining a polynomial which will evaluate to the same
value on each point of a line. On the other hand if k = C, then it
can be shown easily using the projection π that Pn is compact in the
metric topology and any polynomial function on Pn, being a global
holomorphic function on a compact space, is constant. A projective
variety of Pn is a closed subset of a compact space will also be compact
and will carry no nontrivial global functions. This heuristic argument
suggests that we start defining the rational functions.

Rational Functions: If we define a rational function in the projective
case in exactly the same way as we defined it in the affine case, we would
encounter the same technical difficulty mentioned above. Namely, there
is no canonical way of choosing a representative from [x1 : · · · : xn], and
any choice should be available for calculating the value of the function.
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This detail is put aside by using homogeneous polynomials. A rational
function on a projective variety X ⊆ Pn is defines as

φ : Pn 99K k

[x1 : · · · : xn] 7→ F (x0, . . . , xn)

G(x0, . . . , xn)
,

for some F, G ∈ k[x0, . . . , xn] which are homogeneous polynomials
of the same degree. Two other homogeneous polynomials F ′, G′ ∈
k[x0, . . . , xn] of the same degree will define the rational function φ as
F ′/G′ if and only if FG′−F ′G = I(X). The domain of φ as a rational
function is X, but as a function its domain consists of those points
p ∈ X for which there are homogeneous polynomials F,G of the same
degree such that φ(p) = F (p)/G(p) and G(p) 6= 0.

The set of rational functions form a field, the rational field of X, and
is denoted by k(X).

Regular Functions: For a point p ∈ X ⊆ Pn, a rational function
φ ∈ k(X) is called regular at p if there is a representation of φ of the
form φ = F/G where F,G ∈ k[x0, . . . , xn] are homogeneous of the same
degree and G(p) 6= 0. The set of all functions regular at p ∈ X form
a ring, the ring of regular functions at p, and this ring is denoted by
Op,X , or by Op if the reference to X is unambiguous.

If U is a subset of X, then as before we denote by O(U) the ring of
regular functions on U . Clearly

O(U) =
⋂
p∈U

Op.

The heuristic arguments of the first paragraph of this section are jus-
tified now with the following theorem.

Theorem 11. If X ⊆ Pn
k is a projective variety, then

O(X) = k.

In other words, the only global regular functions are constants.

¤
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Morphisms of Algebraic Sets: If X ⊆ Pn and Y ⊆ Pm are algebraic
sets, then a morphism from X to Y is given by

φ : X −→ Y

p 7→ [f0(p) : · · · : fm(p)]

where f0, . . . , fm ∈ k[x0, . . . , xn] are homogeneous polynomials of the
same degree not vanishing simultaneously on X. Projective morphisms
are locally affine morphisms in the sense that if Di ⊂ X is the set on
which fi does not vanish then

φ(p) = [
f0(p)

fi(p)
: · · · : fm(p)

fi(p)
]

where each fj/fi is a regular function on Di.

Two projective varieties X and Y are isomorphic if there are morphisms
f : X → Y and g : Y → X such that g ◦ f and f ◦ g are identity maps
on X and Y respectively.

Biregular Theory: The affine biregular theory involved coordinate
rings. Two affine varieties are isomorphic if and only if their coordinate
rings are isomorphic. This fact follows from the fact that the affine
coordinate ring k[X] of an affine variety X ⊆ An has two identical
descriptions. Both the ring of global regular functions and the quotient
ring k[x1, . . . , xn]/I(X) can be taken as k[X]. However in the projective
case we just saw that the ring of global regular functions consists of
only the constants. We can still define the projective coordinate ring
k[X] of a projective variety X ⊆ Pn as the quotient ring

k[X] = k[x0, . . . , xn]/I(X).

This ring however is not a biregular invariant of X since it does not
reflect the properties of the global regular functions on X.

Rational Morphisms: Projective rational maps are defined in ex-
actly the same way as the affine case except that the functions are now
projective functions given as the ratios of two homogeneous polynomi-
als of the same degree.

If X ⊆ Pn and Y ⊆ Pm are projective varieties, a rational morphism

φ : X 99K Y

is given by φ(p) = [f0(p) : · · · : fm(p)] where each fi is a rational
function on X.
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Two projective varieties X and Y are said to be birationally equivalent,
or simply birational, if there exist rational morphisms f : X 99K Y and
g : Y 99K X such that f ◦ g = IdV and g ◦ f = IdU on some open sets
U ⊂ X and V ⊂ Y .

Birational Theory: As in the affine case, any rational map φ : X 99K
Y induces a field morphism φ∗ : k(Y ) → k(X). Two varieties are
birational if and only if their function fields are isomorphic.

3. Affine Covers

In the projective n-space define the open sets

Ui = {[x0 : · · · : xn] ∈ Pn
∣∣ xi 6= 0 },

for i = 0. . . . , n. It follows that Pn =
n⋂

i=0

Ui. The advantage of this

construction is that each Ui is affine through the following map.

φi : Ui −→ An

(x0 : · · · : xn) 7→ (
x0

xi

, . . . ,
x̂i

xi

, . . . ,
xn

xi

)

where ̂ means that the term is omitted. Defining coordinates on An as

z
(i)
j =

{
xj−1

xi
If j < i,

xj

xi
If j > i.

the transition functions are given by

φj ◦ φ−1
i : φi(Ui ∩ Uj) −→ φj(Ui ∩ Uj)

z = (z
(i)
1 , . . . , z(i)

n ) 7→ (f1(z), . . . , fn(z))

where each fs(z) is either
1

z
(i)
j

or of the form
z

(i)
t

z
(i)
j

for some t = s −
1, s, s + 1. This makes Pn a rational k-manifold in the sense that the
transition functions are regular rational functions. If k = C, then Pn

is a complex manifold.



CHAPTER 3

Quasi-Projective Varieties

1. First Definitions

Each φi : Ui → An is a bijective map. If Ui is given the induced Zariski
topology from Pn and An is taken with its usual Zariski topology, then
φi becomes a homeomorphism. If X ⊆ An is an affine variety, then the
closure of φ−1

i (X) in Pn is a projective variety.

A subset X ⊆ Pn is called a quasi-projective variety if the closure of X
in Pn is a projective variety.

This concept collects together both affine and projective varieties and
brings forward the significance of searching for birational invariants.

From now on when we say “variety” we will mean a “quasi-projective
variety”.

Since coordinate rings are not biregular invariants of projective vari-
eties, we keep the function field as the main algebraic structure asso-
ciated to a variety.

Exercises

1. The projective variety Z(x0x2−x2
1) in P2 is isomorphic to P1, yet their

coordinate rings are not isomorphic.

2. The Krull dimension of the coordinate ring of a projective variety is
equal to dimX +1. In particular dimX = tr.degk(X)−1. The surplus
is contributed by the irrelevant ideal.

23
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2. Smoothness

A quasi-projective variety X ⊆ PN is going to be called smooth if it
locally looks like An where dim X = n. We want to make precise what
it means for a variety to locally look like an affine n-space.

Since smoothness is a local concept we want to define what we expect
from X if it is going to be smooth at p ∈ X.

Definition 12. A variety X is called smooth at p ∈ X if the local ring
Op is a regular local ring. Otherwise it is called singular at p. X is
called smooth if it is smooth at all of its points. It is called singular if
it is not smooth.

Recall that a Noetherian local ring R with maximal ideal m is called
regular if dim R = dimk m/m2 where k = R/m.

If Op is the local ring of X at p, then its maximal ideal m consists of all
f ∈ Op vanishing at p and the underlying field k is recovered as Op/m.

Let f1, . . . , fm ∈ k[x1, . . . , xn] is a set of generators for the ideal J .
Define partial derivatives of a polynomial formally, and for every p ∈
X = Z(J) let

Jac(f1, . . . , fm)(p) =

(
∂fi

∂xj

(p)

)

be the Jacobian matrix at p ∈ X associated with the given basis.
Choose another set of generators g1, . . . , gr for the ideal J . Then

rank Jac(f1, . . . , fm)(p) = rank Jac(g1, . . . , gr)(p).

X is smooth at p if and only if this rank is n− dim X.

Exercises

1. If X is singular at p, then dimk m/m2 > dimOp.

2. The set of singular points of a variety X is a proper algebraic subset of
X.

3. If X is a smooth variety then dimX = dimOp for any p ∈ X.
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3. Resolution of Singularities

If X and Y are varieties with X singular and Y smooth, and if there
is a surjective morphism

φ : Y −→ X

where φ−1 is defined as a rational map, we say that Y , or φ, resolves
the singularity of X. In this case there is an open subset U of X,
necessarily containing the singular set of X in its complement, such
that the restriction map

φ : φ−1(U) −→ U

is an isomorphism.

When char k = 0, it is known, by Hironaka’s famous work [6], that
a resolution of singularities always exist. Moreover there is a way of
obtaining Y from X through a process called blowing up.

We first describe the blowing up of An at the origin. The process
consists of replacing the origin by the set of lines through the origin.
As a result of this, two distinct lines passing through the origin in An

are assigned to two different points in the new space at the origin while
keeping their other points unchanged. Thus they no longer intersect in
the new space. We need to show how this is accomplished.

Define

B0(An) = {((x1, . . . , xn), [y1 : · · · : yn]) ∈ An × Pn−1
∣∣ xiyj = xjyi, 1 ≤ i, j ≤ n }.

This is a smooth quasi-projective variety which is called the blowing
up of An at the origin. We have the canonical projection

π : B0(An) −→ An

((x1, . . . , xn), [y1 : · · · : yn]) 7→ (x1, . . . , xn)

which is an isomorphism outside the origin

π : π−1(An − {(0, . . . , 0)}) ≈−→ An − {(0, . . . , 0)}.
Moreover the origin is replaced by Pn−1 in the sense that

π−1 ((0, . . . , 0)) = Pn−1.

If X ⊆ An is an affine variety with (0, . . . , 0) ∈ X, then by restricting
π to π−1(X) we obtain B0(X), the blowing up of X at the origin. It
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turns out that

B0(X) = {((x1, . . . , xn), [y1 : · · · : yn]) ∈ X × Pn−1
∣∣ xiyj = xjyi, 1 ≤ i, j ≤ n },

and π : B0(X) → X the canonical projection on the first component.



CHAPTER 4

Arf Rings and Closure

1. Heuristics

In this preliminary section we will describe how the geometric proper-
ties of a curve singularity can be translated into an arithmetic problem
involving integers. For this we first associate a particular local ring to
the singularity and then we describe in terms of integers what is hap-
pening at each step of the resolution of the singularity. The narration
in this section is intended to be inspirational rather than rigorous.

Curve Branch: Consider a resolution of a curve C

π : C̃ −→ C,

and take a point p on C. In general π−1(p) = {p1, . . . , pr}. Here r = 1
if p is a smooth point, but it can be larger than one when p is singular.
We want to narrow than our attention to a particular neighborhood of
the singularity where r is always one.

If Ui is an open neighborhood of pi not containing any of the other pj’s
and moreover if Ui is such that π(Ui) does not meet any singular point
of C other than p itself, then we call π(Ui) a branch of the curve at p.
This is clearly a local consideration. If Op is the local ring of regular
functions at p, then the completion of this local ring with respect to
its maximal ideal splits up as the sum of several complete local rings.
Each of these rings is the completion with respect to its maximal ideal
of the local ring of regular functions at p of some branch of C at p.

Multiplicity Sequence: Let C denote a branch at p ∈ C and assume
that π = πm ◦ · · · π1 : C̃ −→ C is a resolution of the branch singularity
at p ∈ C. Since C̃ is smooth, there is an open neighborhood of π−1(p)
which is an isomorphic image of some open subset U of the origin in A1

k.
Composing this with π gives an isomorphism of U with a neighborhood
of p with A1. If C is in An, this isomorphism is given by n regular
functions on some open neighborhood of An. Each of these regular

27
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functions are of the form fi(t)/gi(t) with gi(0) 6= 0 and fi(0) = 0,
i = 1, . . . , n. The multiplicity of C at p is defined to be the smallest of
the orders of these fi’s, where the order of a polynomial in one variable
is its order of vanishing at the origin. Note that the multiplicity of a
smooth point is 1.

Let mi be the multiplicity of (πi ◦ · · · π1)
−1(C) at (πi ◦ · · · π1)

−1(p), for
i = 0, . . . , m where m0 is set as the multiplicity of C at p. The sequnce

m0, . . . , mr, 1, 1, . . .

is called the multiplicity sequence of C at p.

Effect of Blowing up: Assume that C lies in An and p is the origin.
If we blow up An at the origin and consider the local affine charts of

the blow up, we obtain (x1, . . . , xn) 7→ (
x1

xi

, . . . ,
xi−1

xi

, xi,
xi+1

xi

, . . . ,
xn

xi

).

Assume now that xj = φj(t), j = 1, . . . , n is a parametrization of C at
p. Assuming that the order of φi is smallest among the orders of the
φj’s, the corresponding expression

(
φ1

φi

, . . . ,
φi−1

φi

, φi,
φi+1

φi

, . . . ,
φn

φi

)

is a parametrization of the first blow up.

2. Formal Set Up

For this section k can be any field. Let k[[t]] denote the ring of for-
mal power series in the variable t. Any element of this ring can be
represented as a formal power series of the form

φ(t) = c0 + c1t + · · ·+ crt
r + · · · , where ci ∈ k.

This is a unique factorization domain.

We define the order of φ(t) as

ordφ(t) = m if cm 6= 0 and ci = 0 for all i < m.

We note that every element of order zero is invertible in k[[t]]. Moreover
if ordφ1(t) < ordφ2(t), then φ1(t)|φ2(t). In other words there is a unique
element (φ2/φ1)(t) ∈ k[[t]] such that φ2(t) = (φ2/φ1)(t)φ1(t).

For any subring H of k[[t]] we define

S(H) = {ordw ∈ N
∣∣ w ∈ H }
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which is a semigroup of N. The greatest common divisor of the elements
of S(H) is denoted by gcd(S(H)).

A formal curve branch C is defined to be the set up

x1 = φ1(t)
...

xn = φn(t)

where each φi(t) ∈ k[[t]] and for the formal power series ring H =
k[[φ1, . . . , φn]] generated by the φi’s in k[[t]] is such that gcd(H) = 1.
We say that the branch passes through the origin if φ(0) = · · · =
φn(0) = 0, or equivalently if the order of each φi(t) is zero. The formal
power series ring H0 = k[[φ1(t), . . . , φn(t)]] is called the ring associated
to the branch. Note that m0 is the smallest nonzero integer in H0,
m0 = min S(H0\{0}).
If ordφ1(t) ≤ ordφi(t) for all i = 2, . . . , n, we say that the multiplicity
of the origin on this branch is m0 = ordφ1(t). In this case we define
the blow up of this branch at the origin to be the branch defined by

x1 = φ1(t) = ψ1(t)

x2 =
φ2(t)

φ1(t)
− (φ2/φ1)(0) = ψ2(t)

...

xn =
φn(t)

φ1(t)
− (φn/φ1)(0) = ψn(t).

This can be interpreted as the image of the blow up in the first open
affine chart, where the preimage of the origin is made the origin again
by a change of variables. The multiplicity of this branch is m1 =
min S(H1\{0}), where H1 = k[[ψ1(t), . . . , ψn(t)]].

Continuing in this way we obtain the sequence of rings H0, H1, . . . and
integers m0, m1, . . . where mi = min S(Hi\{0}) for all i = 0, 1, . . . .

The sequence m0,m1, . . . is called the multiplicity sequence of the branch
C, or equivalently of the ring H0.

Main question: The main question is to find the multiplicity sequence
starting with H0. Since each φi(t) is a formal power series with infinitely
many terms, we cannot attack the problem directly as we would not
know beforehand how many terms of the division φi/φj)(t) we should
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keep at each stage so that none of the relevant terms of future blow up
constructions will be missed.

The ideal situation would be to recover the multiplicity sequence using
only the semigroup S(H0).

Exercises

1. Let the semigroup S(H0) consist of the integers {i0, i1, . . . , ih, . . . }
where ih < ih+1 for all h = 0, 1, . . . . Show that S(H1) is the semi-
group of N generated by the integers i2 − i1, i3 − i1, . . . , ih − i1, . . . .

2. The multiplicity eventually stabilizes in the sense that there exists an
integer r such that mr+i = 1 for all i = 0, 1, . . . . Equivalently Hr+i =
k[[t]] for all i ≥ 0. The geometric interpretation of this is that branch
singularities are eventually resolved.

3. Arf Semigroups

The multiplicity sequence will be obtained through the generators of a
certain semigroup associated to the local ring of the branch singularity.
We will therefore give a through analysis of the kind of semigroups that
will be used. Our main source is Arf’s classical article [1].

A semigroup is defined as a nonempty subset of nonnegative integers,
containing zero and is closed under addition.

We say that the semigroup G is generated by the nonnegative integers
a1, . . . , an if all elements of G are of the form c1a1 + · · · + cnan where
each ci is a nonnegative integer. In this case we use the notation G =
〈a1, . . . , an〉 and say that the semigroup is finitely generated.

If d is the greatest common divisor of all the elements of a semigroup
G, we can divide every element of G by d and obtain a new semigroup
G′ with gcd G′ = 1. Any property of G′ which will interest us can
easily be translated back to G. Therefore we will assume throughout
this section that d = 1 unless we need and announce it otherwise.

We will first settle two fundamental properties of semigroups. Since
we are assuming that the greatest common divisor of the elements of
the semigroup G is 1, the first fundamental property of G is that it
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contains all integers n where n ≥ n0 for some n0 ∈ N. In other words,
the complement of G in N is finite.

The other fundamental property is that a semigroup is finitely gener-
ated in the sense explained above.

We prove these properties in the next two lemmas.

Lemma 13. If G is a semigroup with gcd G = 1, then there exists an
integer n0 ∈ N such that n ∈ G for every n ≥ n0. ¤

Lemma 14. Every semigroup is finitely generated. ¤

Let G = {i0, i1, i2, . . . , ih, . . . } be a semigroup where i0 = 0 and the
elements are given in increasing order, i` < i`+1 for every ` ≥ 0. For
every h ≥ 0 we define the set

[G− ih] := {in − ih | n ≥ h},
and the semigroup Gh to be the smallest semigroup in N containing
the set [G − ih]. The elements of Gh are finite linear combinations of
elements of [G− ih] with coefficients from N.

Definition 15. A semigroup G is called an Arf semigroup if Gh =
[G− ih] for every h ≥ 0.

The simplest Arf semigroup is N. Thus every semigroup is contained
in an Arf semigroup. This prompts the concept of the smallest Arf
semigroup containing a semigroup, if such an object can be uniquely
defined. The following lemma addresses this issue.

Lemma 16. The intersection of two Arf semigroups is an Arf semi-
group. ¤

Proof. If G and H are Arf semigroups, then clearly ∗(G ∩ H) is
contained in both G and H and must therefore be contained in their
intersection. It then turns out that ∗(G ∩ H) is contained in and also
contains G ∩H, so must be equal to it. ¤

We can now define the Arf closure of a semigroup G as the smallest
Arf semigroup containing G. We denote the Arf closure of G by ∗G.

The set of all Arf semigroups containing G is nonempty since N is
Arf and contains G. Using Zorn’s lemma and the above lemma it can
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be shown that the Arf closure of a semigroup exists and is uniquely
defined.

We now take up the task of actually constructing the Arf closure of any
semigroup. Let G = {i0, i1, i2, . . . , ih, . . . } be a semigroup where the
notation is as above. First construct the semigroup G1 as described
above and notice that the set

i1 + G1 = {i1 + g | g ∈ G1}
is closed under addition, since i1 = 2i1−i1 is in G1. This set is almost a
semigroup except that it misses the zero element. We use the notation
{0, i1 + G1} to denote the semigroup obtained by introducing the zero
element into the set i1 + G1. The following inclusions are obvious but
important to observe.

G ⊂ {0, i1 + G1} ⊂ ∗G.

From these inclusions and from the definition of Arf closure it now
follows that

{0, i1 + G1} ⊂ ∗{0, i1 + G1} ⊂ ∗G.

It is straightforward to see that actually

∗{0, i1 + G1} = {0, i1 + ∗G1}.
This makes {0, i1 + ∗G1} the smallest Arf semigroup containing G, and
hence we have

∗G = {0, i1 + ∗G1}.
This reduces the task of finding ∗G to that of finding ∗G1. But is it
really a reduction?

We know that G = {i0, i1, . . . , ir + N} where the notation is meant to
mean that ir − 1 6∈ G but ir + n ∈ G for every n ∈ N. Using the
same notation we write G1 = {j0, j1, . . . js + N}. It can be shown that
js < ir, so this is an actual reduction.

To construct ∗G1 we repeat the above process. Define G1,1 to be the
semigroup generated by the set {jn − j1|jn ∈ G1, n ≥ 1}. Then we
have ∗G1 = ∗{0, j1 + ∗G1,1}. Continuing in this way we will eventually
have G1,...,1 = N which is already an Arf ring. Thus the process will
terminate after finitely many steps.
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We can now give a full description of all Arf semigroups. For this we
rewrite the entries of a semigroup G as follows:

G = {0,m1,m1 + m2,m1 + m2 + m3, . . . ,m1 + · · ·+ mr + N}.
The sequence m1, . . . , mr is a non-increasing sequence of non-negative
integers. We complete this finite sequence to an infinite sequence by
adjoining infinitely many 1s.

m1,m2, . . . , mr, 1, 1, . . . .

The notation is meant to imply that mr > 1.

We can now describe all Arf semigroups.

Lemma 17. A semigroup G = {0,m1,m1+m2,m1+m2+m3, . . . , m1+
· · · + mr + N} is an Arf semigroup if and only if there exists a non-
increasing sequence m1, m2, . . . mr, 1, 1, . . . of non-negative integers ter-
minating in a sequence of repeating 1s where mr > 1 and such that

mn ∈ {mn+1,mn+1 + mn+2, . . . ,mn+1 + · · ·+ mr + N} for n = 1, . . . , r − 1.

¤

The question of finding the Arf closure of a semigroup G now reduces
to finding the above sequence of integers once the generators of G are
given. In other words, if G = 〈a1, . . . , an〉, for some finite set of non-
negative integers a1, . . . , an, then how do we find m1,m2, . . . which
describe ∗G?

The sequence m1, . . . , mr, 1, 1, . . . must be encoded in the set of gen-
erators a1, . . . , an, but how do we recover them? To answer this we
describe now Du Val’s version of the Jacobi algorithm. The Jacobi al-
gorithm is an algorithm for finding greatest common divisor of a finite
set of non-negative integers, which generalizes the Euclidean algorithm
for finding the greatest common divisor of two integers. Du Val slows
down the process in the Jacobi algorithm to bring out a sequence of
non-decreasing non-negative integers, see [2].

The Du Val-Jacobi algorithm consists of the following procedure:

Start with {S = {a1, . . . , an}, i}. Assume without loss of generality
that a1 ≤ a2 ≤ · · · ≤ an. We now set q = ba2/a1c and define mi+1 =
· · · = mi+q = a1. The new set S is defined as S = {a1, a2−qa1, . . . , an−
qa1}. We then repeat this process with {S, q}. The process terminates
when S is a singleton. Assuming that the greatest common divisor
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of the integers a1, . . . , an is 1, the last integer obtained through the
algorithm is ms = 1. We adjoin to this finite sequence infinitely many
1s to obtain the sequence

m1,m2, . . . , mr, 1, 1, . . .

with the understanding that mr > 1.

Lemma 18. The sequence m1, . . . , mr, 1, 1, . . . describing the Arf clo-
sure of a semigroup G = 〈a1, . . . , an〉 can be recovered from the gener-
ators of G by Du Val’s modified Jacobi algorithm where we start with
{S = {a1, . . . , an}, 0}. ¤

The construction of Arf closure of a semigroup is now totally under-
stood. We therefore dare to ask deeper questions. For example ex-
perience with the Jacobi algorithm suggests that sometimes a proper
subset of the generators a1, . . . , an also give the same sequence. So
what is the minimal set of integers which will give the same sequence
m1, m2, . . . ?

We start this road of investigation with the following observation.

Lemma 19. If G and H are two semigroups with ∗G = ∗H, then ∗(G ∩
H) = ∗G = ∗H.

Proof. If G = {0, i1, i2, . . . } and H = {0, j1, j2, . . . }, then clearly
i1 = j1 since ∗G = ∗H. This gives

∗G = {0, i1 + ∗G1} and ∗H = {0, i1 + ∗H1}.
Thus the problem reduces to showing that ∗(G1∩H1). If we repeat this
process we will eventually get G1,...,1 = N when the statement of the
claim is trivial. ¤

Let Gχ be the intersection of all semigroups whose Arf closures are
equal to ∗G. We just showed that ∗Gχ = ∗G. Let χ1, . . . , χn be the
minimal set of generators of Gχ over N.

This semigroup Gχ is called the characteristic semigroup of G, and its
minimal generators χ1, . . . , χn are called the Arf characters of G.

Finally, we observe the following.

Lemma 20. The set of characters of G = 〈a1, . . . , an〉 is a subset of
the set of generators a1, . . . , an, and the sequence obtained from the set
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of characters by the Du Val-Jacobi algorithm is the same as the one
obtained from the generators of G. ¤

Observe also that if χ1, . . . , χn is the set of Arf characters of G giving
the sequence m1,m2, . . . through the Du Val-Jacobi algorithm, then the
set of integers obtained from the set of Arf characters of G adjoining
any number of elements from ∗G give the same sequence through the
Du Val-Jacobi algorithm.

Exercises

1. Give proofs of all the lemmas whose proofs are not given in the text.

2. Report any errors, ambiguities, misspellings suggestions etc. immedi-
ately to sertoz@bilkent.edu.tr.

4. Arf Rings

As in the previous section let H = k[[φ1(t), . . . , φn(t)]] be the subring
of k[[t]] generated by the formal power series φ1(t), . . . , φn(t) such that

gcd{ordφ1(t), . . . , ordφn(t)} = 1.

For every nonnegative integer m define

Im = {s ∈ H
∣∣ ords ≥ m },

and for every m ∈ S(H) let sm denote a fixed element of order m in
H. Clearly if s′m is another element of order m, then sm = αs′m where
α ∈ k[[t]] is a unit.

For every m ∈ S(H) we define the set

Im/sm = { φ

sm

∣∣ φ ∈ Im }.
This set is closed under addition but not necessarily under multiplica-
tion.

Let [Im/sm] denote the ring generated in k[[t]] by the set Im/sm. If
Im/sm is closed under multiplication then [Im/sm] is nothing but Im/sm

itself. The ring [Im/sm] does not depend on the choice of the element
sm, so we use the notation

[Im] = [Im/sm] .
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Definition 21. A subring H of k[[t]] is called an Arf ring if the set
Im/sm is always closed under multiplication for every m ∈ S(H) and
every element sm of order m. The smallest Arf ring containing H in
k[[t]] is called the Arf closure of H and is denoted by ∗H

Since k[[t]] is clearly an Arf ring, and since the intersection of two Arf
rings is again an Arf ring, Arf closure of any ring exists.

We have a dual definition for semigroups.

Definition 22. A subsemigroup S of N is called an Arf semigroup if
the set {m′ −m

∣∣ m′ ∈ S and m′ ≥ m } is a semigroup. The smallest
Arf semigroup in N containing S is called the Arf closure of S and is
denoted by ∗S.

Again by observing that N is an Arf semigroup and that the intersection
of two Arf semigroups is an Arf semigroup, we conclude that Arf closure
of any semigroup exists.

The multiplicity sequence can now be redescribed using the above con-
cepts. Suppose we have: H = k[[φ1(t), . . . , φn(t)]] where each φi(t) ∈
k[[t]] with gcd{ordφ1(t), . . . , ordφn(t)} = 1. Assume that the multi-
plicity sequence of the branch formally parameterized by the φi(t)’s is
m0, m1, . . . . We want to describe a procedure to obtain this multiplicity
sequence.

Let H0 = H. Then clearly m0 is the smallest nonzero integer in S(H0).
Define H1 to be [Im0 ] for the ring H0. Then m1 is the smallest nonzero
integer in S(H1).

Having defined H0, . . . , Hi and the sequence of integers m0, . . . ,mi, we
define Hi+1 to be [Imi

] of the ring Hi, and then mi+1 is define to be the
smallest nonzero integer in S(Hi+1).

The point of all these definitions is the following theorem.

Theorem 23. The multiplicity sequence obtained from H is the same
as the one obtained from ∗H. ¤

Observe that if H is an Arf ring, then necessarily S(H) is an Arf
semigroup but not conversely.
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Exercises

1. If H is the subring of k[[t]] generated by some elements
φ1(t), . . . , φn(t) ∈ k[[t]] where the greatest common divisor of the
orders of the φi’s is one, then H is isomorphic to the ring k +
ks1 + · · · + ksm + k[[t]]sm+1 where the si’s are elements of k[[t]] with
ords1 < · · · < ordsm+1.

5. Constructing Arf Closure: Rings





CHAPTER 5

Curves

1. First Definitions

A curve X is a smooth projective variety of dimension one. At every
point p ∈ X the local ring of regular functions Op is a regular ring of
dimension one. Such a ring is a principal ideal domain. If mp is the
maximal ideal of regular functions vanishing at p, then it is generated
by an element t. It follows that every element of Op is of the form utn

where u is a unit and n is a non-negative integer. If f ∈ k[X] is a
rational function then either f or 1/f is regular at p. If f is regular at
p and is non-zero there, then both f and 1/f are regular at p.

Since X has no non-constant global regular functions, there is a point
q on X where t is not regular. If we denote a generator of mq by s, then
t at q is 1/s up to a unit. It follows that every rational function on X
is of the form tn up to a unit. The exponent n is called the order of f
at p and is denoted by ordp(f). Units at p on the other hand represent
rational functions of X that do not vanish at p.

If a rational function f on X is not regular at p, then 1/f vanishes at
p. In this case p is called a pole of f with order equal to the vanishing
order of 1/f at p and the order of the pole is −ordp(f).

Lemma 24. The number of zeros of a rational function is equal to its
number of poles, both counted with multiplicity. ¤

A divisor on X is a formal sum D =
∑
p∈X

npp where each np is an integer

and only finitely many of the integers np are non-zero. If D′ =
∑
p∈X

mpp

is another divisor, then we define the sum of D and D′ point wise,

D + D′ =
∑
p∈X

(np + mp)p. The set of all divisors on X, denoted by

Div(X), forms an Abelian group under this addition.

39
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A divisor D =
∑

p∈X npp is called effective if all np ≥ 0. The degree

of D is defined as deg D =
∑

np. We say
∑

npp ≥
∑

mpp when each
np ≥ mp. It follows from these definitions that D ≥ D′ if and only if
D −D′ ≥ 0 or equivalently if and only if D −D′ is effective.

If f is a rational function on X, then we define the divisor of f on X
as

(f) =
∑
p∈X

ordp(f)p.

From the above lemma it follows that deg(f) = 0. We write (f) as the
difference of two effective divisors

(f) = (f)0 − (f)∞

where (f)0 =
∑

ordp(f)>0

ordp(f)p and (f)0 =
∑

ordp(f)<0

ordp(f)p. These

are called the divisors of zeros and poles of f respectively.

Two divisors D and D′ are called linearly equivalent and denoted by
D ≡ D′ if D −D′ = (f) for some rational function f on X.

For any divisor D, the set of all effective divisors linearly equivalent to it
is denoted by |D|. This is called the complete linear system associated
to D.

Exercises

1. Show directly that on P1, a rational function has as many zeros as
poles, counting multiplicities.

2. Any two points on P1 are linearly equivalent as divisors. In fact on P1

any two divisors of the same degree are linearly equivalent.

3. The complete linear system |D| is empty if deg(D) ≤ 0.

2. Riemann’s Inequality

For a divisor D =
∑

p∈X npp we define

L(D) = {f ∈ k(X)
∣∣ f = 0 or (f) + D ≥ 0}.

L(D) is a k-vector space. We denote its dimension by `(D).
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Lemma 25. For any divisor D ∈ Div(X) we have;
(i) If L(D) 6= {0}, then deg(D) ≥ 0.
(ii) If D ≥ 0, then `(D) ≥ 1.

Proof. If f ∈ L(D) and f is not zero, then (f) + D ≥ 0 implies
that deg(D) ≥ 0 since deg(f) = 0. If on the other hand D ≥ 0, then
for any constant function f we have (f) + D ≥ 0 since in this case
(f) = 0. ¤

It follows in particular that `(D) = 0 when deg(D) < 0.

Lemma 26. For any divisor D =
∑

q∈X nqq and any point p on X we

have `(D) ≤ `(D + p) ≤ `(D) + 1.

Proof. Clearly L(D) ⊂ L(D + p) so the first inequality is imme-
diate. For the second inequality choose a generator t of mp. Then
ordp(t) = 1. If f ∈ L(D + p), then ordp(t

np+1f) = ordp(t
np+1) +

ordp(f) ≥ 0 and it follows that tnp+1f is regular at p. This defines a
linear map

φ : L(D + p) −→ k

f 7→ (tnp+1f)(p).

If f is in the kernel of φ, then ordp(t
np+1f) > 0, or np + ordp(f) ≥ 0,

putting f in L(D). Conversely it is clear that L(D) ⊂ ker φ. The
lemma now follows since the rank of the range is at most one. ¤

Corollary 27. `(D) ≤ 1 + deg D when deg D ≥ 0.

Proof. If n = deg D define D′ = D − (n + 1)p for some fixed
p ∈ X. Now lemma 26 applied n + 1 times gives `(D) ≤ `(D′) + n + 1.
But `(D′) = 0 since deg D′ < 0. ¤

How sensitive is `(D) to the degree of D? Is it possible to pick a point
p ∈ X such that `(np) remains bounded as n increases beyond bound?
The answer to such queries is given by the following theorem.

Theorem 28 (Riemann’s Inequality). For any curve X, there is an
integer g such that

`(D) ≥ deg(D) + 1− g

for all divisors D ∈ Div(X). The smallest such integer g is called the
genus of X and is also denoted by g(X). ¤
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We observed before that there are no global non-trivial regular func-
tions on a projective curve X but we did not address the question of
existence for global non-trivial rational functions on X. Riemann’s
inequality now answers this question. Pick any point p ∈ X. Then
`(np) > 1 when n > g. It implies that there is a rational function with
a pole of order n at p and regular elsewhere.

Exercises

1. The complete linear system |D| is the projectivization of the vector
space L(D) and as a projective space its dimension is `(D)− 1.

2. For any point p ∈ P1, we have `(p) = 2. In fact for any curve X, if for
some point p ∈ X we have `(p) > 1, then X is isomorphic to P1, and
`(p) = 2 for all p ∈ X.

3. If D ∈ Div(P1) with deg(D) = n ≥ 0, then `(D) = n + 1.

4. Show that the genus of P1 is zero and in fact any curve of genus zero
is isomorphic to P1.

3. Differentials and Canonical Divisors

A differential ω on X is a choice of a rational function fp at every p ∈ X
subject to the following condition: If t is a local parameter at p and s
at q, with t = α(s), where α(s) is an invertible rational function of s,
then fq(s) = fp(α(s))α′(s)). Here the derivative of α(s) with respect
to s is defined formally.

We define the divisor associated to the differential ω = {fp| p ∈ X} as
(ω) =

∑
p∈X ordp(ω)p where ordp(ω) = ordp(fp).

If ω = {fp| p ∈ X} and ω′ = {gp| p ∈ X} are two differentials, then
(ω) = (ω′)+(h) where h is the rational function which is given by fp/gp

at p. Therefore every differential on X defines the same divisor up to
linear equivalence. We call any of these divisors the canonical divisor
of X and denote it by K.

We can simplify the definition of a differential for practical purposes. If
t0 is a local parameter at p0 ∈ X, let U0 be an open set in X on which
t0 is regular. Then consider only those points pi which are on X but
outside U0 and for each such pi, consider the open set Ui on which the
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local parameter ti is regular. Finitely many of these Ui will cover X.
At each pi choose a rational function fi subject to the condition that on
Ui ∩Uj, fi(ti) = fj(αji(ti))α

′
ji(ti) where αji(ti) = tj is invertible. Then

for any p ∈ Ui ∩ Uj, we have ordpfi(ti) = ordpfj(tj) and this defines
the canonical divisor.

We can calculate the canonical divisor of P1 as follows. Let [x0 : x1] be
homogeneous coordinates and t = x1/x0, s = x0/x1 the local param-
eters. Here t = α01(s) = 1/s. We can choose f0(t) = 1 and f1(s) =
−1/s2. Since f1(s) = f0(1/s)(−1/s2), we see that K = −2[0 : 1].

The term that makes the Riemann’s inequality an equality can now be
described in terms of the canonical divisor.

Theorem 29 (The Riemann-Roch Theorem). For any divisor D on a
curve X of genus g, we have the equality

`(D) = deg(D) + 1− g + `(K −D)

where K is the canonical divisor of X.

Using the Riemann-Roch theorem first for D = 0 we get

`(K) = g.

Next using this together with the Riemann-Roch theorem for D = K,
we get

deg(K) = 2g − 2.

Since the canonical divisor for P1 has degree −2, this gives another
verification of the fact that its genus is zero. This prompts the question:
For any positive integer g, is there a curve of genus g?
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