Date: April 14, 2008, Monday NAME:
Time: 13:40-15:30
Ali Sinan Sertöz
STUDENT NO: \qquad

Math 431 Algebraic Geometry - Midterm Exam II - Solutions

1	2	3	4	5	TOTAL
20	20	20	20	20	100

Please do not write anything inside the above boxes!

PLEASE READ:

Check that there are 5 questions on your exam booklet. Write your name on the top of every page. A correct answer without proper reasoning may not get any credit.

Q-1) The folium of Descartes, $x^{3}+y^{3}+9 x y=0$, is a singular curve in \mathbb{R}^{2}. Find the point at which this curve meets the line at infinity in $\mathbb{P}_{\mathbb{R}}^{2}$. Also find the slope with which it intersects the line at infinity.

Solution:

First homogenize with respect to $z: x^{3}+y^{3}+9 x y z=0$. With these coordinates, the line at infinity corresponds to $z=0$. Intersecting it with our curve gives $x^{3}+y^{3}=0$, or $x=-y$ since we are working over \mathbb{R}. Thus the point at infinity on this curve in $\mathbb{P}_{\mathbb{R}}^{2}$ is $[-1,1,0]$.

To find the slope, de-homogenize with respect to y by setting $u=x / y$ and $v=z / y$, to find $u^{3}+1+9 u v=0$. Consider v as a function of u and implicitly differentiate this equation with respect to u to obtain $3 u^{2}+9 v+9 u v^{\prime}=0$. The point at infinity corresponding to $(u, v)=(-1,0)$ gives the slope at the intersection point as $v^{\prime}=1 / 3$.

Q-2) Consider the hyperbola $x^{2}-y^{2}=1$ and the line $y=\alpha x$ with $0 \leq \alpha<\infty$ in \mathbb{R}^{2}. Find their points of intersection, depending on α, in $\mathbb{P}_{\mathbb{R}}^{2}$.

Solution:

If $0 \leq \alpha<1$, then the line and the hyperbola intersect in the affine plane when $x= \pm \sqrt{1 /\left(1-\alpha^{2}\right)}$. There is no intersection when $\alpha>1$ since we are working over the reals. When $\alpha=1$ the intersection is on the line at infinity. Homogenize the hyperbola with respect to z and de-homogenize with respect to y to obtain $u^{2}-1=v^{2}$ where $u=x / y$ and $v=z / y$. The line at infinity corresponds to $v=0$, giving the intersection points as $[\pm 1: 1: 0]$ in $\mathbb{P}_{\mathbb{R}}^{2}$. These points correspond to the asymptotic lines $y=x$ and $y=-x$ of the given hyperbola.

Q-3) Let $G=\{5 x+9 y \mid x, y \in \mathbb{N}\}$. Show that G is not an Arf semigroup. Construct the Arf closure * G of G.

Solution:

```
G={0,5,9,10,14,15,18,19,20,23,24,25,27,28,29,30,32+\mathbb{N}}.
G}=\mp@subsup{\operatorname{span}}{\mathbb{N}}{}{0,4,5,9,10,13,14,15,18,19,20,22,23,24,25,27+\mathbb{N}
G}={0,4,5,8,9,10,12+\mathbb{N}}
G}=\mp@subsup{\operatorname{span}}{\mathbb{N}}{}{0,1,4,\ldots
G}=\mathbb{N}\mathrm{ .
** }G={0,5+\mp@subsup{}{}{*}\mp@subsup{G}{1}{}}={0,5+{0,4+\mp@subsup{}{}{*}\mp@subsup{G}{2}{}}}={0,5+{0,4+\mathbb{N}}}={0,5,9+\mathbb{N}}
```

Q-4) Let H be the ring in the formal power series ring $\mathbb{C}[[t]]$ generated by elements of the form

$$
\sum_{m, n \in \mathbb{N}} c_{m, n}\left(t^{4}\right)^{m}\left(t^{10}+t^{15}\right)^{n}, \text { where } c_{m, n} \in \mathbb{C}
$$

Show that H is not an Arf ring. Du Val calculated the Arf characters of the branch corresponding to H as $4,10,17$. Using this find the multiplicity sequence of this branch. In particular find out how many times you should blow up the singularity before it is resolved.

Solution:

Letting $X=t^{4}$ and $Y=t^{10}+t^{15}$, we observe that $\left[I_{4}\right]$ contains the element $(Y / X)^{2}-\left(X^{2} / X\right)^{3}=2 t^{17}+t^{22}$, but the set I_{4} / t^{4} does not contain any element of order 17. Hence H is not an Arf ring.

Applying the Du Val-Jacobi algorithm to the set of Arf characters we find that the multiplicity sequence is $4,4,2,2,2,2,1, \ldots$, so we need to blow up 6 times to resolve the singularity.

Here is the Du Val-Jacobi algorithm applied to Arf characters:
Smallest element of $\{4,10,17\}$ is 4 and goes 2 times into the second smallest element 10. This gives $m_{1}=m_{2}=4$.

The next step starts with $\{4,10-8,17-8\}=\{4,2,9\}$. Repeating the above procedure, we find $m_{3}=m_{4}=2$.

The next step starts with $\{4-4,2,9-4\}$ or after omitting zero $\{2,5\}$. This gives $m_{5}=m_{6}=2$.

The next step starts with $\{2,5-4\}=\{2,1\}$. Since this gives $m_{7}=m_{8}=1$, the singularity is resolved, and we stop.

Q-5) Let H be a subring of the formal power series ring $\mathbb{C}[[t]]$ satisfying the condition that if $W(H)=\{\operatorname{ord} \phi \mid \phi \in H\}=\left\{i_{0}=0, i_{1}, i_{2}, \ldots\right\}$, with the understanding that $0<i_{n}<i_{n+1}$ for every $n=1,2, \ldots$, then for every $n=1,2, \ldots$, there exists and element $S_{i_{n}} \in H$ with $\operatorname{ord} S_{i_{n}}=i_{n}$ such that every element of H is in the form $\sum_{\ell=0}^{\infty} c_{\ell} S_{i_{\ell}}$ with $c_{\ell} \in \mathbb{C}$.
Show that if $\alpha=1+c_{1} S_{i_{1}}+c_{2} S_{i_{2}}+\cdots$ is in H, then its inverse, $1 / \alpha$ is also in H.

Solution:

We can set $\beta_{1}=-c_{1}$ so that

$$
\alpha\left(1+\beta_{1} S_{i_{1}}\right) \equiv 1 \quad \bmod t^{i_{1}+1} .
$$

Assume we found $\beta_{1}, \ldots, \beta_{n-1} \in \mathbb{C}$ such that

$$
\alpha\left(\prod_{\ell}^{n-1}\left(1+\beta_{\ell} S_{i_{\ell}}\right)\right) \equiv 1 \quad \bmod t^{i_{n-1}+1}
$$

In other words

$$
\alpha\left(\prod_{\ell}^{n-1}\left(1+\beta_{\ell} S_{i_{\ell}}\right)\right)=1+\gamma_{n} S_{i_{n}}+\gamma_{n+1} S_{i_{n+1}}+\cdots .
$$

Then setting $\beta_{n}=-\gamma_{n}$ we can see that

$$
\alpha\left(\prod_{\ell}^{n}\left(1+\beta_{\ell} S_{i_{\ell}}\right)\right) \equiv 1 \quad \bmod t^{i_{n}+1}
$$

Hence

$$
1 / \alpha=\prod_{\ell=1}^{\infty}\left(1+\beta_{\ell} S_{i_{\ell}}\right) \in H
$$

