NAME:....

Date: May 24, 2010, Monday Time: 12:15-14:15 Ali Sinan Sertöz

STUDENT NO:.....

Math 431 Algebraic Geometry – Final Exam – Solutions

1	2	3	4	5	Bonus	TOTAL
20	20	20	20	20	+20	100

Please do not write anything inside the above boxes!

Check that there are 5+1 questions on your exam booklet. Write your name on top of every page. Show your work in reasonable detail. A correct answer without proper or too much reasoning may not get any credit.

In this exam we are working on an algebraically closed field k.

Q-1) Define the blow-up of \mathbb{A}^2 at the origin and apply it to show that a blow up resolves the singularities of the plane curve $y^2 = x^3 + x^2$.

Solution:

The blow up of the affine plane at the origin is the space

$$\{((x,y),[u;v]) \in \mathbb{A}^2 \times \mathbb{P}^1 \mid xv = yu \}.$$

Blowing up the above curve and changing to local coordinates gives the following equations: $y^2 - (yx)^3 - (yx)^2 = y^2(1 - yx^3 - x^2) = 0$. Here $y^2 = 0$ gives the exceptional divisor and $1 - yx^3 - x^2 = 0$ gives a smooth curve. $(yx)^2 - x^3 - x^2 = x^2(y^2 - x - 1) = 0$. Here again $x^2 = 0$ gives the exceptional divisor and $y^2 - x - 1 = 0$ gives a smooth curve. Hence, one blow up resolves the singularity.

STUDENT NO:

Q-2) Let $X = \{ [x_0 : x_1 : x_2 : x_3] \in \mathbb{P}^3 \mid x_1^3 = x_0 x_2^2 \}$. Show that X is a surface birational to \mathbb{P}^2 .

Solution:

Check that the rational maps $[x_0 : x_1 : x_2 : x_3] \mapsto [x_1 : x_2 : x_3]$ and $[u : v : w] \mapsto [u^3 : uv^2 : v^3 : v^2w]$ are inverses of each other and gives the birational isomorphism between X and \mathbb{P}^2 .

NAME:

STUDENT NO:

Q-3) For a smooth algebraic curve C and a divisor $D \in Div(C)$, define the space L(D) and show that it is a vector space over k of finite dimension.

Solution:

$$L(D) = \{ f \in k(C) \mid (f) + D \ge 0 \} \cup \{ 0 \}.$$

That L(D) is a vector space follows directly from the properties of the ord_P function which is a valuation. In particular the fact that $ord_P(f+g) \ge \min\{ord_P(f), ord_P(g)\}$ forces f + g to be in L(D) when both are.

Let $\dim_k L(D) = \ell(D)$.

It is easy to show that if D_1 is linearly equivalent to D_2 , then the vector spaces $L(D_1)$ and $L(D_2)$ are isomorphic. Moreover, since $\deg((f) + D) = \deg D \ge 0$ for $f \in L(D)$, it follows that $\ell(D) = 0$ when $\deg(D) < 0$.

If there are no effective divisors equivalent to D, then $L(D) = \{0\}$.

Assume now without loss of generality that D is effective.

If deg D = 0, then since D is effective, D = 0 and L(D) = k, and consequently $\ell(D) = 1$.

Let $d = \deg(D) \ge 1$. Choose points p_1, \ldots, p_{d+1} on C not lying on the support of D. Consider the map

$$\phi: L(D) \to k^{d+1}$$

$$f \mapsto (f(p_1), \dots, f(p_{d+1}))$$

Observe that ker $\phi = L(D - p_1 - \dots - p_{d+1}) = \{0\}$ since the degree of the divisor involved is negative. But the kernel has at most codimension d + 1 in L(D), which holds when ϕ is surjective. This gives $\ell(D) \leq d + 1$ and hence L(D) is finite dimensional.

NAME:

STUDENT NO:

Q-4) Let C be a smooth algebraic curve and $D \in Div(C)$ with deg(D) = 0 and $D \neq 0$. Prove or disprove that there exists a non-zero rational function f on C with (f) = D if and only if $\ell(D) > 0$.

Solution:

The statement is true and we will prove it.

First assume that $\ell(D) > 0$. Let $g \in L(D)$ be non-zero and such that $(g) + D \ge 0$. But since $\deg((g) + D) = \deg(D) = 0$, we must have (g) + D = 0, which gives D = (f) where f = 1/g.

Next assume that there exists a non-zero rational function f on C with (f) = D. Then it is clear that 1/f is non-zero and is in L(D). Hence $\ell(D) > 0$.

STUDENT NO:

Q-5) Define what it means for a curve to be *hyperelliptic*. Prove or disprove that every smooth algebraic curve of genus 2 is hyperelliptic.

Solution:

A smooth curve C is called *hyperelliptic* if $g(C) \ge 2$ and there is a surjective morphism from C onto \mathbb{P}^1 of degree 2.

The statement is true and we will prove it.

Let C be a genus 2 curve with canonical divisor K. Since $\ell(K) = 2$, we may take K to be effective. Since deg K = 2g-2 = 2, we may take K = p+q for some points p and q on C. Take a non-constant f in L(D), which is possible since $\ell(D) = 2$. Then the map $x \mapsto [1 : f(x)]$ is the map onto \mathbb{P}^1 which makes C hyperelliptic.

NAME:

STUDENT NO:

Q-B) Let C be a smooth curve lying in \mathbb{P}^n and satisfying the property that every hyperplane in \mathbb{P}^n intersects C in exactly n points, counting multiplicities. Prove or disprove that C is isomorphic to \mathbb{P}^1 .

Solution:

The statement is true and we will prove it.

Let f be a linear polynomial in $k[x_0, \ldots, x_n]$ and $D = C \cap Z(f)$ where Z(f) is as usual the zero set of the polynomial f in \mathbb{P}^n . Note that $\deg(D) = n$.

The rational functions $x_0/f, \ldots, x_n/f$ are linearly independent and are all in L(D). Hence $\ell(D) \ge n + 1$. By Riemann-Roch theorem we have

$$\ell(D) = n + 1 + (\ell(K - D) - g),$$

so we must have $\ell(K - D) \ge g$. But $\ell(K - D) \le \ell(K) = g$, so we must have $\ell(K - D) = g$.

If $g \ge 2$, then $\ell(K - D) \le \ell(K - p) = g - 1$ for some p in the support of D, since K is base point free. But this contradicts $\ell(K - D) = g$.

If g = 1, then $\deg(K - D) = -n$, so $\ell(K - D) = 0$, which contradicts $\ell(K - D) = g$.

Hence g = 0 and C is rational.