\qquad

$$
\text { Math } 431 \text { Algebraic Geometry - Final Exam - Solutions }
$$

1	2	3	4	5	Bonus	TOTAL
20	20	20	20	20	+20	100

Please do not write anything inside the above boxes!
Check that there are $5+1$ questions on your exam booklet. Write your name on top of every page. Show your work in reasonable detail. A correct answer without proper or too much reasoning may not get any credit.

In this exam we are working on an algebraically closed field k.

Q-1) Define the blow-up of \mathbb{A}^{2} at the origin and apply it to show that a blow up resolves the singularities of the plane curve $y^{2}=x^{3}+x^{2}$.

Solution:

The blow up of the affine plane at the origin is the space

$$
\left\{((x, y),[u ; v]) \in \mathbb{A}^{2} \times \mathbb{P}^{1} \mid x v=y u\right\} .
$$

Blowing up the above curve and changing to local coordinates gives the following equations:
$y^{2}-(y x)^{3}-(y x)^{2}=y^{2}\left(1-y x^{3}-x^{2}\right)=0$. Here $y^{2}=0$ gives the exceptional divisor and $1-y x^{3}-x^{2}=0$ gives a smooth curve.
$(y x)^{2}-x^{3}-x^{2}=x^{2}\left(y^{2}-x-1\right)=0$. Here again $x^{2}=0$ gives the exceptional divisor and $y^{2}-x-1=0$ gives a smooth curve. Hence, one blow up resolves the singularity.

Q-2) Let $X=\left\{\left[x_{0}: x_{1}: x_{2}: x_{3}\right] \in \mathbb{P}^{3} \mid x_{1}^{3}=x_{0} x_{2}^{2}\right\}$. Show that X is a surface birational to \mathbb{P}^{2}.

Solution:

Check that the rational maps $\left[x_{0}: x_{1}: x_{2}: x_{3}\right] \mapsto\left[x_{1}: x_{2}: x_{3}\right]$ and $[u: v: w] \mapsto\left[u^{3}: u v^{2}: v^{3}: v^{2} w\right]$ are inverses of each other and gives the birational isomorphism between X and \mathbb{P}^{2}.

Q-3) For a smooth algebraic curve C and a divisor $D \in \operatorname{Div}(C)$, define the space $L(D)$ and show that it is a vector space over k of finite dimension.

Solution:

$$
L(D)=\{f \in k(C) \mid(f)+D \geq 0\} \cup\{0\} .
$$

That $L(D)$ ia a vector space follows directly from the properties of the $\operatorname{or} d_{P}$ function which is a valuation. In particular the fact that $\operatorname{ord}_{P}(f+g) \geq \min \left\{\operatorname{ord}_{P}(f), \operatorname{ord}_{P}(g)\right\}$ forces $f+g$ to be in $L(D)$ when both are.

Let $\operatorname{dim}_{k} L(D)=\ell(D)$.
It is easy to show that if D_{1} is linearly equivalent to D_{2}, then the vector spaces $L\left(D_{1}\right)$ and $L\left(D_{2}\right)$ are isomorphic. Moreover, since $\operatorname{deg}((f)+D)=\operatorname{deg} D \geq 0$ for $f \in L(D)$, it follows that $\ell(D)=0$ when $\operatorname{deg}(D)<0$.

If there are no effective divisors equivalent to D, then $L(D)=\{0\}$.
Assume now without loss of generality that D is effective.
If $\operatorname{deg} D=0$, then since D is effective, $D=0$ and $L(D)=k$, and consequently $\ell(D)=1$.
Let $d=\operatorname{deg}(D) \geq 1$. Choose points p_{1}, \ldots, p_{d+1} on C not lying on the support of D. Consider the map

$$
\begin{aligned}
\phi: L(D) & \rightarrow k^{d+1} \\
f & \mapsto\left(f\left(p_{1}\right), \ldots, f\left(p_{d+1}\right)\right)
\end{aligned}
$$

Observe that $\operatorname{ker} \phi=L\left(D-p_{1}-\cdots-p_{d+1}\right)=\{0\}$ since the degree of the divisor involved is negative. But the kernel has at most codimension $d+1$ in $L(D)$, which holds when ϕ is surjective. This gives $\ell(D) \leq d+1$ and hence $L(D)$ is finite dimensional.

Q-4) Let C be a smooth algebraic curve and $D \in \operatorname{Div}(C)$ with $\operatorname{deg}(D)=0$ and $D \neq 0$. Prove or disprove that there exists a non-zero rational function f on C with $(f)=D$ if and only if $\ell(D)>0$.

Solution:

The statement is true and we will prove it.
First assume that $\ell(D)>0$. Let $g \in L(D)$ be non-zero and such that $(g)+D \geq 0$. But since $\operatorname{deg}((g)+D)=\operatorname{deg}(D)=0$, we must have $(g)+D=0$, which gives $D=(f)$ where $f=1 / g$.

Next assume that there exists a non-zero rational function f on C with $(f)=D$. Then it is clear that $1 / f$ is non-zero and is in $L(D)$. Hence $\ell(D)>0$.

Q-5) Define what it means for a curve to be hyperelliptic. Prove or disprove that every smooth algebraic curve of genus 2 is hyperelliptic.

Solution:

A smooth curve C is called hyperelliptic if $g(C) \geq 2$ and there is a surjective morphism from C onto \mathbb{P}^{1} of degree 2.

The statement is true and we will prove it.
Let C be a genus 2 curve with canonical divisor K. Since $\ell(K)=2$, we may take K to be effective. Since deg $K=2 g-2=2$, we may take $K=p+q$ for some points p and q on C. Take a non-constant f in $L(D)$, which is possible since $\ell(D)=2$. Then the map $x \mapsto[1: f(x)]$ is the map onto \mathbb{P}^{1} which makes C hyperelliptic.

Q-B) Let C be a smooth curve lying in \mathbb{P}^{n} and satisfying the property that every hyperplane in \mathbb{P}^{n} intersects C in exactly n points, counting multiplicities. Prove or disprove that C is isomorphic to \mathbb{P}^{1}.

Solution:

The statement is true and we will prove it.
Let f be a linear polynomial in $k\left[x_{0}, \ldots, x_{n}\right]$ and $D=C \cap Z(f)$ where $Z(f)$ is as usual the zero set of the polynomial f in \mathbb{P}^{n}. Note that $\operatorname{deg}(D)=n$.

The rational functions $x_{0} / f, \ldots, x_{n} / f$ are linearly independent and are all in $L(D)$. Hence $\ell(D) \geq$ $n+1$. By Riemann-Roch theorem we have

$$
\ell(D)=n+1+(\ell(K-D)-g)
$$

so we must have $\ell(K-D) \geq g$. But $\ell(K-D) \leq \ell(K)=g$, so we must have $\ell(K-D)=g$.
If $g \geq 2$, then $\ell(K-D) \leq \ell(K-p)=g-1$ for some p in the support of D, since K is base point free. But this contradicts $\ell(K-D)=g$.

If $g=1$, then $\operatorname{deg}(K-D)=-n$, so $\ell(K-D)=0$, which contradicts $\ell(K-D)=g$.
Hence $g=0$ and C is rational.

