$\qquad$

Math 431 Algebraic Geometry - Midterm Exam I - Solutions

| 1 | 2 | 3 | 4 | 5 | TOTAL |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |
| 20 | 20 | 20 | 20 | 20 | 100 |

Please do not write anything inside the above boxes!
Check that there are 5 questions on your exam booklet. Write your name on top of every page. Show your work in reasonable detail. A correct answer without proper or too much reasoning may not get any credit.

In this exam we are working on an algebraically closed field $k$.

Q-1) Show that the union of two affine algebraic varieties is again an algebraic variety.

## Solution:

A proof is given on page 18 of the textbook. Here is another proof.
Assume $p \in V\left(J_{1}\right) \subset V\left(J_{1}\right) \cup V\left(J_{2}\right)$. This means that for any $f \in J_{1} \cap J_{2} \subset J_{1}, f(p)=0$, implying that $p \in V\left(J_{1} \cap J_{2}\right)$.

Conversely assume that $p \in V\left(J_{1} \cap J_{2}\right)$. If $p \in V\left(J_{1}\right)$, we are done. If not, then there exists $g \in J_{1}$ such that $g(p) \neq 0$. Take any $f \in J_{2}$. Then $f g \in J_{1} \cap J_{2}$, so by assumption about $p$ we must have $f(p) g(p)=0$. But since $g$ does not vanish at $p$, we have $f(p)=0$, implying that $p \in V\left(J_{2}\right) \subset V\left(J_{1}\right) \cup V\left(J_{2}\right)$.

We showed that $V\left(J_{1}\right) \cup V\left(J_{2}\right)=V\left(J_{1} \cap J_{2}\right)$, which means that the union of two varieties is agaian variety.

Q-2) Assuming that for any $n \geq 1, V(J) \neq \emptyset$ for any proper ideal $J \subset k\left[x_{1}, \ldots, x_{n}\right]$, show that $I(V(J)) \subseteq \sqrt{J}$.

## Solution:

This is the standard Rabinovitsch trick, see page 25 of the textbook.

Q-3) Let $X=V\left(y-x^{2}\right), Y=V(x y-1) \subset \mathbb{A}^{2}$. Show that $X$ and $Y$ are not isomorphic to each other. Show however that the projective closures $\bar{X}$ and $\bar{Y}$ in $\mathbb{P}^{2}$ are isomorphic.

## Solution:

Since $k[X] \simeq k[x]$ and $k[Y] \simeq k[x, 1 / x]$, these two varieties are not isomorphic. The projective closures are given by $\bar{X}=V\left(y z-x^{2}\right)$ and $\bar{Y}=V\left(x y-z^{2}\right)$ in $\mathbb{P}^{2}$. Clearly the map $[x: y: z] \mapsto[z:$ $y: x]$ is an isomorphism between the two.

Q-4) Let $X=V\left(x^{2} y+x y^{2}-x^{4}-y^{4}\right) \subset \mathbb{A}^{2}$. Show that $X$ is singular at the origin and has three branches entering the origin with their corresponding tangents having equations $x=0, y=0$ and $x+y=0$. Blow up $X$ at the origin. Does this resolve the singularity? How many more blow-up operations do you need to resolve the singularity?

## Solution:

The tangents directions at the origin are given by $x^{2} y+x y^{2}=0$, which gives the above directions.
To blow this up at the origin, put $x=X, y=X Y$ to obtain $(Y-X)+Y^{2}-X Y^{4}=0$ which is smooth. Note that this curve intersects the exceptional divisor $Z=0$ at $Y=0, Y=-1$ and $Y=\infty$ corresponding to the slopes of the tangents of the branches of the original curve at the origin.

Q-5) Using the definition that a line tangent at infinity to a plane curve is an asymptotic line to that curve and using the projective closure of $\mathbb{A}^{2}$ in $\mathbb{P}^{2}$, find the equations of all asymptotic lines for the curve $C$ given by $x y+x^{3}+y^{3}=0$ if it has an asymptotic line. Is there a real asymptote, i.e. when $k=\mathbb{R}$ ?

## Solution:

Projective closure $\bar{C}$ of $C$ is given by $x y z+x^{3}+y^{3}=0$. Dehomogenize by $y=1$ to get $x z+x^{3}+1=$ 0 . The point at infinity corresponds to $z=0$ which forces $x \in\{-1, \exp (\pi / 3)$, $\exp (-\pi / 3)\}$. The gradient of $x z+x^{3}+1=0$ is $\left(z+3 x^{2}, x\right)$, and at $(\omega, 0)$ it is $\left(3 \omega^{2}, \omega\right)$, where $\omega \in\{-1, \exp (\pi / 3), \exp (-\pi / 3)\}$. The equation of the tangent line at infinity is then given by $\left(3 \omega^{2}, \omega\right) \cdot(x-\omega, z)=0$, or $3 \omega^{2} x+3+\omega z=$ 0 . Homogenizing with respect to $y$ and dehomogenezing with respect to $z$ gives the equations of the asymptotic lines as $3 \omega^{2}+3 y+\omega=0$. Putting $\omega=-1$ gives the asymptote in $\mathbb{R}^{2}$.

