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Q-1) Show that every smooth non-degenerate curve C ⊂ Pg−1 of genus g and degree 2g−2 is a canonical
curve.

Solution:

Let D be a hyperplane section of C. Then D > 0 and degD = 2g− 2. Moreover D = H ∩C where
H in Pg−1 is given by λ1x1 + · · ·+ λgxg = 0.

Consider the functions fα =
xα

λ1x1 + · · ·+ λgxg

∈ K(C), α = 1, . . . , g. Since (fα) = (xα)−(λ1x1+

· · ·+ λgxg) = (xα)−D, we have fα ∈ L(D), α = 1, . . . , g.

The functions f1, . . . , fg are linearly independent, otherwise there would be constants c1, . . . , cg, not
all zero, such that c1f1+ · · ·+ cgfg = 0, implying that C lies in the hyperplane c1x1+ · · ·+ cgxg = 0
contradicting the assumption that C is non-degenerate. Therefore ℓ(D) ≥ g.

By Riemann-Roch theorem, ℓ(D) = degD− g+1+ i(D) = g− 1+ ℓ(K −D) where K = (ω) is a
canonical divisor of C, where ω is a holomorphic 1-form on C. This implies that ℓ(K −D) ≥ 1. Let
f ∈ L(K −D) be a non-zero element. Then (f)+ (ω)−D ≥ 0. But since deg((f)+ (ω)−D) = 0,
we must have (f) + (ω) − D = 0, so (fω) = D. Thus D is the divisor of a holomorphic 1-form
D = (fω) = (ω1), setting ω1 = fω.

For every g ∈ L(D) we have (g)+D = (gω1) ≥ 0, so g 7→ gω1 is an injective morphism from L(D)
to Ω1(C). Considering dimensions, we see that this injection is an isomorphism. So f1ω1, . . . , fgω1

is a basis of Ω1(C). Consider the corresponding canonical map

ϕK : C −→ Pg−1

[x1 : · · · : xg] 7→ [f1ω1 : · · · : fgω1]

= [f1 : · · · : fg]

= [
x1

λ1x1 + · · ·+ λgxg

: · · · : xg

λ1x1 + · · ·+ λgxg

]

= [x1 : · · · : xg] = identity.

Hence ϕK is an isomorphism and ϕK(C) = C, thus showing that C is a canonical curve.

Remark: This is problem 7 on page 211. See also the hint and remark that follows.
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Q-2) Let C be a compact Riemann surface and D ≥ 0 be an effective divisor with ℓ(D) > 0 and
ℓ(K −D) > 0. Show that ℓ(D) ≤ 1

2
degD + 1.

Solution:

For any divisor D, let |D| denote the set of all effective divisors linearly equivalent to D. Then |D| is
isomorphic to the projectivization of L(D), hence it is a projective space of dimension ℓ(D)− 1.

Let D1 and D2 be any two effective divisors. Consider the map

α : |D1| × |D2| −→ |D1 +D2|
(A,B) 7→ A+B.

Given any D ∈ |D1 +D2|, there are only finitely many different ways of writing D as A+ B where
A and B are effective divisors. And only some, if any, of them satisfies A ∈ |D1| and B ∈ |D2|. So
α is a finite-to-one mapping and this gives dim |D1|+ dim |D2| ≤ dim |D1 +D2|.

Letting D1 = D and D2 = K −D, we see that ℓ(D) + ℓ(K −D) ≤ g+ 1. But Riemann-Roch gives
ℓ(D) − ℓ(K − D) = degD − g + 1. Adding these two side by side we get 2ℓ(D) ≤ degD + 1 as
required.

Remark: This is known as Clifford’s Theorem. it is Exercise 4.4 on page 188. See also the extensive
hint given there.
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Q-3) Let C be a compact complex Riemann surface and D any divisor on C. Show, using the basic
definitions, that L(D) is finite dimensional and in fact that ℓ(D) ≤ degD + 1 when degD ≥ 0.
(Clearly ℓ(D) = 0 when degD < 0.)

Solution:

We will first show that if D is an effective divisor, then ℓ(D) ≤ degD + 1. We will prove this
statement by induction on the degree of the effective divisor D.

If degD = 0, then D = 0 and in this case L(D) ∼= C, so ℓ(D) = 1 and the above statement holds
trivially.

Now assume that the statement holds for all effective divisors D of degree ≤ n for some non-negative
integer n. Let p be any point on our curve C. Consider the divisor D + p. Let z be a local coordinate
on C around p such that p corresponds to z = 0. For any f ∈ L(D+p), let m = νp(f) be the order of
vanishing of f at p. And let c(m)

f be the residue of f/zm+1 at p. This means that the Laurent expansion
of f at p, in terms of z is given by f(z) = c

(m)
f zm + c

(m+1)
f zm+1 + · · · . This defines a linear map

ϕ : L(D + p) → C
f 7→ c

(m)
f , where m = νp(f).

The kernel of this map is L(D), and ℓ(D + p) ≤ ℓ(D) + 1 where equality holds if and only if ϕ is
onto. Now using our induction assumption on ℓ(D), we conclude that ℓ(D + p) ≤ n+ 2 as required.
This completes the induction and hence the proof that for every effective divisor D we must have
ℓ(D) ≤ degD + 1.

Now let D be an arbitrary divisor on C with degD ≥ 0. If ℓ(D) = 0, then ℓ(D) ≤ degD + 1 holds
trivially.

If ℓ(D) > 0, then there is an f ∈ L(D) such that (f) + D ≥ 0 by definition. Call D′ = (f) + D.
Clearly D′ ∼ D and ℓ(D′) = ℓ(D) and degD′ = degD. Since D′ ≥ 0, we can use the above
statement that ℓ(D′) ≤ degD′ + 1, which proves the same statement for D.

Remark: See also the excellent argument given on page 102 which shows that ℓ(D) ≤ degD + 1
for an effective divisor D.

Here is another popular argument. Say degD = n > 0 and take p ∈ C not in the support of D.
Consider the map

ϕ : L(D) → Cn+1

f 7→ (f(p), f ′(p), . . . , f (n)(p)).

This is a linear map whose kernel is precisely L(D − (n + 1)p). Since degD − (n + 1)p < 0, we
have ℓ(D − (n+ 1)p) = 0. It now follows that ϕ is injective and hence ℓ(D) ≤ n+ 1.
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Q-4) Calculate the intersection number of the curves x3 − x2 + y2 = 0 and y3 − x2 = 0 at the origin.
Rotate the first curve by π/4 degrees counterclockwise and calculate its intersection number with
y3 − x2 = 0 at the origin. Explain what happened geometrically.

Solution:

Parametrize y3 − x2 = 0 by x = t3, y = t2. Substitute this into x3 − x2 + y2 = 0 to obtain
t4 − t6 + t9 = 0 which vanishes to order 4 at the origin. hence the intersection number at the origin
is 4.

Rotating the first curve by π/4 we get something like (y − x)3 − 4
√
2xy = 0. Doing the same

parametrization here gives vanishing to order 5. Hence the intersection number in this case is 5.

In the first case each branch of x3 − x2 + y2 = 0 at the origin is like a straight line passing through
the origin of y3−x2 = 0 and intersecting it in another point. Since the total intersection number must
be three, the origin supplies two fold intersection. Two branches supplying intersection number two
each makes four.

In the second case, one branch, y = 0, intersects the cusp y3 − x2 = 0 at the origin and at infinity,
[x : y : z] = [1 : 0 : 0], thus giving intersection number two at the origin. But the other branch,
x = 0, intersects the cusp only at the origin so supplies a multiplicity of three. Adding up two and
three gives five.

Remark: This is problem 5 on page 208.


