Math 114 Algebraic Geometry - Homework 1 - Solutions

Textbook: Phillip A. Griffiths, Introduction to Algebraic Curves, AMS Publications, 1989.

Q-1) Exercise 3.1 (page 14) Prove that the definition of $\nu_{p}(F)$ is well defined.

Solution:

Suppose C is a compact Riemann surface with $f \in K(C), f \neq 0$ and $p \in C$. Select a local coordinate z around p such that $z(p)=0$. Then around p

$$
f=z^{\nu} h(z)
$$

where $h(z)$ is a holomorphic function around p and $h(0) \neq 0$ with $\nu \in \mathbb{Z}$. This ν is defined to be $\nu_{p}(f)$.

Assume w is another local coordinate around p with $w(p)=0$.
For a point q in a neighborhood of p where both z and w are defined, we have

$$
f(q)=f \circ z^{-1}(z(q))=(z(q))^{\nu}\left(h \circ z^{-1}(z(q))\right) .
$$

Set $\alpha=\left(z \circ w^{-1}\right)$. This is a biholomorphic function and

$$
z(q)=\alpha(w(q))=a_{1} w(q)+a_{2} w(q)^{2}+\cdots
$$

is the Taylor extension with $a_{1} \neq 0$. We have no constant term since $0=z(p)=\alpha(w(p))=\alpha(0)$. Putting this into the expression for f we have

$$
\begin{aligned}
f(q) & =\left(f \circ z^{-1}\right)(z(q)) \\
& =(z(q))^{\nu}\left(h \circ z^{-1}(z(q))\right) \\
& =\left(a_{1} w(q)+a_{2} w(q)^{2}+\cdots\right)^{\nu}\left(h \circ z^{-1}\left(z \circ w^{-1} \circ w(q)\right)\right) \\
& =(w(q))^{\nu}\left(a_{1}+a_{2} w(q)+\cdots\right)^{\nu}\left(h \circ w^{-1}(w(q))\right) \\
& =(w(q))^{\nu}\left(H \circ w^{-1}(w(q))\right)
\end{aligned}
$$

where $H(q)=g(q) h(q)$ with $g(q):=\left(a_{1}+a_{2} w(q)+\cdots\right)^{\nu}$ is holomorphic around p with $H(p) \neq 0$. This shows that $\nu_{p}(f)=\nu$ and is independent of the holomorphic coordinate chosen.

Q-2) Exercise 3.2 (page 14) Suppose that C is either the Riemann sphere S or the complex torus \mathbb{C} / Λ. Take $f \in K(C)$. Verify that

$$
\sum_{p \in C} \nu_{p}(f)=0 .
$$

Solution:

First observe that zeros and poles of a rational function are isolated and when C is compact their total number is finite. So the sum in question is a finite sum.

Next assume that $C=S$. Take any point p_{0} on S which is neither a zero nor a pole for F. Let γ be a small circle around p_{0}, oriented positively and containing no pole or zero of f on its interior. Since in general

$$
\int_{\gamma} \frac{f^{\prime}}{f}=\#(\text { zeros of } f \text { inside } \gamma)-\#(\text { poles of } f \text { inside } \gamma)
$$

this integral is zero. On the other hand $S \backslash\left\{p_{0}\right\}$ is isomorphic to \mathbb{C}, and considering the same integral with reverse orientation we get

$$
\begin{aligned}
\int_{-\gamma} \frac{f^{\prime}}{f} & =-\int_{\gamma} \frac{f^{\prime}}{f} \\
& =\#(\text { poles of } f \text { inside }-\gamma)-\#(\text { zeros of } f \text { inside }-\gamma) \\
& =-\sum_{p \in C} \nu_{p}(f)
\end{aligned}
$$

since we count the zeros and poles with multiplicity. But now this integral and hence the sum is zero.
Next let $C=\mathbb{C} / \Lambda$. This time we cannot play the above game since the complement of a point is not isomorphic to \mathbb{C} but there is another game to be played.

Let γ be the boundary of a fundamental region for C in \mathbb{C} oriented positively. On one hand we have

$$
\int_{\gamma} \frac{f^{\prime}}{f}=\#(\text { zeros of } f \text { inside } \gamma)-\#(\text { poles of } f \text { inside } \gamma) .
$$

On the other hand this integral is zero since the opposite sides of γ are identified but traversed in opposite directions thus causing a cancelation.

Q-3) Prove Remark 3.9 (page 15): Clearly any meromorphic function f on a Riemann surface C is a holomorphic mapping into the Riemann sphere S.

Solution:

Using the notation on pages 6 and 7, define a map

$$
\alpha: C \longrightarrow S
$$

as follows. For any $p \in C$,

$$
\alpha(p)= \begin{cases}\Phi_{1}^{-1}(f(p)) & \text { if } f(p) \neq \infty \\ \Phi_{0}^{-1}(1 / f(p)) & \text { if } f(p) \neq 0 .\end{cases}
$$

To check that this is well defined, it suffices to recall that

$$
\Phi_{1}^{-1}(f(p))=\Phi_{0}^{-1} \circ\left(\Phi_{0} \circ \Phi_{1}^{-1}\right)(f(p))=\Phi_{0}^{-1}(1 / f(p)) .
$$

It is now immediate to see that α is holomorphic.

Q-4) Show that the Riemann sphere S and the complex projective line \mathbb{P}^{1} are isomorphic.

Solution:

We use the notation on page 7. Define a map $\alpha: S \longrightarrow \mathbb{P}^{1}$ as follows.

$$
\alpha(X, Y, Z)= \begin{cases}{\left[\frac{X+i Y}{1-Z}: 1\right]} & \text { if } Z \neq 1 \\ {\left[1: \frac{X-i Y}{1+Z}\right]} & \text { if } Z \neq-1\end{cases}
$$

Also define a map $\beta: \mathbb{P}^{1} \longrightarrow S$ as follows.

$$
\beta([s: t])= \begin{cases}\Phi_{1}^{-1}(s / t) & \text { if } t \neq 0 \\ \Phi_{0}^{-1}(t / s) & \text { if } s \neq 0\end{cases}
$$

It is straightforward to check that these maps are well defined, holomorphic and are inverses of each other.

