\qquad
\qquad

Math 431 Algebraic Geometry - Final and Make-up Exams - Solutions

Final Exam						
1	2	3	4	5	TOTAL	
20	20	20	20	20	100	

Make-up Exam		
M1	M2	TOTAL
50	50	100

Please do not write anything inside the above boxes!
Write your name on top of every page. Show your work in reasonable detail. A correct answer without proper reasoning may not get any credit.

We work over the complex numbers.
This is an open book, open notebook Take-Home Exam.

Q-1) On page 20 of the textbook we have Example 1.5 which gives the formula for the arc-length of an ellipse. Derive this formula and calculate, using a software if necessary, the length of the circumference of the ellipse given by

$$
\frac{x^{2}}{25}+\frac{y^{2}}{9}=1
$$

Solution:

Use the usual formula

$$
\int \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x
$$

for arc-length and simplify to obtain the formula given in the book.
Maple gives 25.53 for the length of the above ellipse.

Q-2) Let $f(x, y)$ and $g(x, y)$ be two irreducible polynomials with complex coefficients. Assume that the affine curves $Z(f)$ and $Z(g)$ never intersect. What happens at infinity? Construct two such polynomials and illustrate your proof.

Solution:

$x^{2}+y$ and $x^{2}+y+1$ are two such polynomials. Their curves intersect at $[0: 1: 0]$ at infinity.

Q-3) In algebraic geometric proofs we repeatedly used change of coordinates to make coordinates of points amenable to further calculations. In particular we used several times a projective transformation of \mathbb{P}^{2} which sends a given point $[a: b: c]$ to $[1: 0: 0]$. Construct explicitly one such projective transformation. Can you construct a projective transformation of \mathbb{P}^{2} which sends any three distinct points to any three distinct points in \mathbb{P}^{2} ?

Solution:

Q-4) Let $f: C \rightarrow C^{\prime}$ be a non-constant algebraic map of projective smooth plane curves. Show that $g(C) \geq g\left(C^{\prime}\right)$, where $g(\cdot)$ denotes the genus.

Solution:

If $g\left(C^{\prime}\right)=0$, there is nothing to prove. If $g\left(C^{\prime}\right) \geq 1$, re-write Riemann-Hurwitz formula as

$$
g(C)=g\left(C^{\prime}\right)+(n-1)\left(g\left(C^{\prime}\right)-1\right)+\frac{1}{2} \operatorname{deg} R
$$

where R is the ramification divisor. Since $n-1 \geq 0$ and $g\left(C^{\prime}\right)-1 \geq 0$ and $\operatorname{deg} R \geq 0$, we are done.

Q-5) Let $C \subset \mathbb{P}^{2}$ be a non-singular algebraic curve. Let a line L intersect C at the distinct points $p_{1}, p_{2}, p_{3}, p_{4}, p_{5}, p_{6}$.
Choose a point $a \in C-\left\{p_{1}, p_{2}, p_{3}, p_{4}, p_{5}, p_{6}\right\}$.
Let L_{i} be the line joining a to p_{i}, and let D_{i} be the divisor consisting of the points $C \cap L_{i}$, counting multiplicities, $i=1, \ldots, 6$.
Let $D=D_{1}+\cdots+D_{6}-6 a-p_{1}-\cdots-p_{6}$.
Calculate $\ell(D)$.

Solution:

From Bezout's theorem we conclude that $\operatorname{deg} C=6$, and from degree-genus formula we find that the genus g of C is 10 . If K is a canonical divisor, it follows from $\operatorname{deg} K=2 g-2$ that $\operatorname{deg} K=18$.

We find that $\operatorname{deg} D=24$ so that $\operatorname{deg}(K-D)<0$ and hence $\ell(K-D)=0$.
Now from Riemann-Roch theorem we find that $\ell(D)=\operatorname{deg} D+1-g=24+1-10=15$.

MQ-1) Let X be a smooth projective plane curve of genus $g>0$, and let K be a canonical divisor of X. Show that we can choose K to be an effective divisor of the form $K=a_{1}+\cdots+a_{g}$, where a_{i} are points on X. Show that $\ell\left(K-a_{i}\right)=g-1$, for any $i=1, \ldots, g$. Moreover show that $\ell\left(K-a_{i}-a_{j}\right)=g-2$, if X is not hyperelliptic, where $1 \leq i \neq j \leq g$. Finally show that if $g=2$, then X is hyperelliptic.

Solution:

MQ-2) Let $f(x)$ and $g(x)$ be complex polynomials of degrees n and $n+2$ respectively, where n is a positive integer. Assume that the roots of $f(x) g(x)=0$ are all distinct. Denote the homogenization of f and g with respect to the variable z by $f^{h}(x, z)$ and $g^{h}(x, z)$ respectively. Define a polynomial $P(x, y, z)=f^{h}(x, z) y^{2}+g^{h}(x, z)$. Let X be the projective plane curve $Z(P)$. Calculate explicitly the genus of X.

Solution:

