\qquad
\qquad

Math 431 Algebraic Geometry - Homework - Solutions

previous	5	6	TOTAL
40	10	10	60

Please do not write anything inside the above boxes!

Q-5) Find the singular points and the multiplicities and the nature (i.e. ordinary or not) of the singular points of the following projective curves.
(i) $y^{2} z=x(x-z)(x-\lambda z), \lambda \in \mathbb{C}$.
(ii) $x^{n}+y^{n}+z^{n}=0$, where $n>0$ is an integer.

Answer:

(i) Let $f(x, y, z)=y^{2} z-x(x-z)(x-\lambda z)=y^{2} z-x^{3}+x^{2} \lambda z+z x^{2}-x \lambda z^{2}$. Then

$$
\begin{aligned}
& \frac{\partial f}{\partial x}=-3 x^{2}+2 x \lambda z+2 z x-\lambda z^{2}, \\
& \frac{\partial f}{\partial y}=2 y z, \\
& \frac{\partial f}{\partial z}=y^{2}+x^{2}-2 x \lambda z+x^{2} \lambda .
\end{aligned}
$$

When $\lambda=0$, there is an ordinary double singularity at $[0: 0: 1]$. When $\lambda=1$, there is an ordinary double singularity at $[1: 0: 1]$. The curve is smooth when $\lambda \neq 0,1$.
(ii) This curve has no singularities.

Q-6) For each $\lambda \in \mathbb{C}$, find the singular points and the multiplicities and the nature (i.e. ordinary or not) of the singular points of the following projective curve.

$$
x^{3}+y^{3}+z^{3}+3 \lambda x y z=0 .
$$

Answer:

Let

$$
f(x, y, z)=x^{3}+y^{3}+z^{3}+3 \lambda x y z=0 .
$$

To find the singular points, we must solve the system of equations

$$
\begin{aligned}
f(x, y, z) & =x^{3}+y^{3}+z^{3}+3 \lambda x y z=0 \\
f_{x}(x, y, z) & =3 x^{2}+3 \lambda y z=0 \\
f_{y}(x, y, z) & =3 y^{2}+3 \lambda x z=0 \\
f_{z}(x, y, z) & =3 z^{2}+3 \lambda x y=0
\end{aligned}
$$

If $\lambda=0$, there is no solution in \mathbb{P}^{2}. We observe that

$$
x f_{x}=y f_{y}=z f_{z} \text {, or equivalently } x^{3}=y^{3}=z^{3} .
$$

Since $[x: y: z:]$ is a point in \mathbb{P}^{2}, we may assume that $x=1$. Then $y, z \in\left\{1, w, w^{2}\right\}$, where w is a primitive cube root of unity. Solving for λ from $f_{x}=0$, we find

$$
\lambda=-\frac{x^{2}}{y z}, \text { and } \lambda^{3}=-1 .
$$

So we have that $\lambda \in\left\{-1,-w,-w^{2}\right\}$. Only for these values of λ, the curve will be singular. For all other values of λ, the curve is smooth.

To find the nature of singularities, observe that

$$
\begin{aligned}
& (x+y+z)\left(x+w y+w^{2} z\right)\left(x+w^{2} y+w z\right)=x^{3}+y^{3}+z^{3}+3(-1) x y z \\
& (x+w y+z)\left(x+w^{2} y+w^{2} z\right)(x+y+w z)=x^{3}+y^{3}+z^{3}+3(-w) x y z \\
& \left(x+w^{2} y+z\right)(x+w y+w z)\left(x+y+w^{2} z\right)=x^{3}+y^{3}+z^{3}+3\left(-w^{2}\right) x y z
\end{aligned}
$$

Thus the curve becomes a union of three distinct lines. The singular points are the intersections of these lines, which are respectively given by the list

$$
\begin{array}{rll}
(1,1,1), & \left(1, w, w^{2}\right), & \left(1, w^{2}, w\right) \\
(w, 1,1), & (1, w, 1), & (1,1, w) \\
\left(w^{2}, 1,1\right), & \left(1, w^{2}, 1\right), & \left(1,1, w^{2}\right)
\end{array}
$$

