\qquad
\qquad

Math 431 Algebraic Geometry - Homework - Solutions

previous	7	8	9	10	TOTAL
60	10	10	10	10	100

Please do not write anything inside the above boxes!

Q-7) Let $\phi: C \rightarrow \mathbb{P}^{2}$ be defined by $\phi[x: y: z]=[x: z]$ where C is a nonsingular projective curve in the projective plane not containing the point $[0: 1: 0]$. Show that if C has degree $d>1$, then ϕ has at least one ramification point. Show that if $d=1$, then ϕ has no ramification points and is a homeomorphism.

Answer:

Let $C=Z(P)$ where P is homogeneous of degree d. The ramification points are $Z(P) \cap Z\left(P_{y}\right)$ which is nonempty when $d>1$.

Q-8) Show that the projective curve D defined by $y^{2} z=x^{3}$ has a unique singular point. Show that the map $f: \mathbb{P}^{1} \rightarrow D$ defined by

$$
f[s: t]=\left[s^{2} t: s^{3}: t^{3}\right]
$$

is a homeomorphism. Deduce that the degree-genus formula cannot be applied to singular curves in \mathbb{P}^{2}.

Answer:

$f^{-1}[x: y: z]=[y: x]=[\sqrt{x}: \sqrt{z}]$ after choosing a branch.

Q-9) Let C be a singular irreducible projective cubic curve in \mathbb{P}^{2}. Show that the tangent line to C at a nonsingular point or a line through two distinct nonsingular points of C cannot meet C at a singular point.

Answer: Use Bezout theorem on page 52 together with lemma 2.24 on page 63.

Q-10) Show that if p is a point of inflection on a nonsingular cubic curve C in \mathbb{P}^{2}, then there are exactly four tangent lines to C which pass through p.

Answer: We can make change of variables so that the inflection point is $p=[0: 1: 0]$ and the curve is given by

$$
f(x, y, z)=y^{2} z-x(x-z)(x-\lambda z), \text { where } \lambda \in \mathbb{C}-\{0,1\} .
$$

Any line through p is of the form $A x+B z=0$ where $(A, B) \neq(0,0)$.
For any point $q \in C$, the tangent line is of the form $\nabla f(q) \cdot(x, y, z)=0$. We observe that $\nabla f(q)=$ $(*, 0, *)$ when q is one of the following four points.

$$
[0: 0: 1],[1: 0: 1],[\lambda: 0: 1],[0: 1: 0] .
$$

