\qquad
\qquad

Math 431 Algebraic Geometry - Homework

previous	7	8	9	10	TOTAL
60	10	10	10	10	100

Please do not write anything inside the above boxes!

Q-7) Let $\phi: C \rightarrow \mathbb{P}^{2}$ be defined by $\phi[x: y: z]=[x: z]$ where C is a nonsingular projective curve in the projective plane not containing the point $[0: 1: 0]$. Show that if C has degree $d>1$, then ϕ has at least one ramification point. Show that if $d=1$, then ϕ has no ramification points and is a homeomorphism.

Answer:

Q-8) Show that the projective curve D defined by $y^{2} z=x^{3}$ has a unique singular point. Show that the $\operatorname{map} f: \mathbb{P}^{1} \rightarrow D$ defined by

$$
f[s: t]=\left[s^{2} t: s^{3}: t^{3}\right]
$$

is a homeomorphism. Deduce that the degree-genus formula cannot be applied to singular curves in \mathbb{P}^{2}.

Answer:

Q-9) Let C be a singular irreducible projective cubic curve in \mathbb{P}^{2}. Show that the tangent line to C at a nonsingular point or a line through two distinct nonsingular points of C cannot meet C at a singular point.

Answer:

Q-10) Show that if p is a point of inflection on a nonsingular cubic curve C in \mathbb{P}^{2}, then there are exactly four tangent lines to C which pass through p.

Answer:

