Due Date: 29 March 2012, Thursday

NAME:....

Ali Sinan Sertöz

STUDENT NO:....

previous	7	8	9	10	TOTAL
60	10	10	10	10	100

Math 431 Algebraic Geometry – Homework

Please do not write anything inside the above boxes!

Q-7) Let $\phi : C \to \mathbb{P}^2$ be defined by $\phi[x : y : z] = [x : z]$ where C is a nonsingular projective curve in the projective plane not containing the point [0 : 1 : 0]. Show that if C has degree d > 1, then ϕ has at least one ramification point. Show that if d = 1, then ϕ has no ramification points and is a homeomorphism.

NAME:

STUDENT NO:

Q-8) Show that the projective curve D defined by $y^2z = x^3$ has a unique singular point. Show that the map $f : \mathbb{P}^1 \to D$ defined by

$$f[s:t] = [s^{2}t:s^{3}:t^{3}]$$

is a homeomorphism. Deduce that the degree-genus formula cannot be applied to singular curves in \mathbb{P}^2 .

NAME:

STUDENT NO:

Q-9) Let C be a singular irreducible projective cubic curve in \mathbb{P}^2 . Show that the tangent line to C at a nonsingular point or a line through two distinct nonsingular points of C cannot meet C at a singular point.

NAME:

STUDENT NO:

Q-10) Show that if p is a point of inflection on a nonsingular cubic curve C in \mathbb{P}^2 , then there are exactly four tangent lines to C which pass through p.