Due Date: 19 April 2012, Thursday

NAME:....

Ali Sinan Sertöz

STUDENT NO:.....

Math 431 Algebraic Geometry – Homework

previous	11	12	13	TOTAL
100	10	10	10	130

Please do not write anything inside the above boxes!

Q-11) Let R and S be connected Riemann surfaces with R compact. Show that every holomorphic map $f: R \to S$ is surjective. Show how it follows from this that there are no non-constant holomorphic functions on a connected compact Riemann surface.

Answer:

NAME:

STUDENT NO:

Q-12) Let Λ be a lattice in \mathbb{C} generated by ω_1 and ω_2 . Define

$$g_2(\Lambda) = 60 \sum_{\omega \in \Lambda - \{0\}} \omega^{-4}$$
, and $g_3(\Lambda) = 140 \sum_{\omega \in \Lambda - \{0\}} \omega^{-6}$.

Show that

$$g_2(\Lambda)^3 - 27g_3(\Lambda)^2 \neq 0.$$

Answer:

NAME:

STUDENT NO:

Q-13) Let Λ , $g_2(\Lambda)$ and $g_3(\Lambda)$ be as in the previous question. Let C_{Λ} be the projective curve in \mathbb{P}^2 defined by

$$y^{2}z = 4x^{3} - g_{2}(\Lambda)xz^{2} - g_{3}(\Lambda)z^{3}.$$

Once the curve C_{Λ} is known, described how to recover the lattice Λ .

Answer: