NAME:....

STUDENT NO:.....

Math 431 Algebraic Geometry – Midterm Exam II – Solutions

1	2	3	4	5	TOTAL
20	20	20	20	20	100

Please do not write anything inside the above boxes!

Check that there are 5 questions on your exam booklet. Write your name on top of every page. Show your work in reasonable detail. A correct answer without proper reasoning may not get any credit.

We work over the complex numbers.

This is an open book, open notebook exam.

NAME:

STUDENT NO:

- **Q-1)** Let C be a compact Riemann surface of genus 2. Assume that the Riemann-Roch theorem holds for C.
 - 1. Show that there exists a non-constant holomorphic function $f: C \to \mathbb{P}^1$ such that $f^{-1}(\infty) = p + q$ for some $p, q \in C$ with $p \neq q$.
 - 2. Why did we not take C as a non-singular curve in \mathbb{P}^2 where we already know that the Riemann-Roch theorem holds?

Solution:

- Since l(K) = g = 2, there is a nonconstant meromorphic function f such that D = (f) + K ≥ 0. Clearly D ~ K and deg D = deg K = 2g 2 = 2, so we might as well take K = p + q. Let g be a nonconstant meromorphic function in L(K). If g has a pole only at p or only at q, then g gives an isomorphism between our Riemann surface and P¹ and the genus becomes zero. Hence g must have a pole at p and q, and is the required degree two map onto P¹.
- 2. From the degree-genus formula for projective plane curves, we know that there is no genus 2 curve in the plane.

- (i) Construct a canonical divisor on \mathbb{P}^1 . Is it holomorphic or meromorphic?
- (ii) Show that there are no holomorphic differentials on \mathbb{P}^1 .
- (iii) Show that a divisor of the form p q cannot be a principal divisor on any non-singular algebraic curve with positive genus, where $p \neq q$.

Solution:

(i) Let homogeneous coordinates on \mathbb{P}^1 be [x : y] and let U be the open set with $x \neq 0$ and V with $y \neq 0$. On U we have the local coordinates X = y/x and on V we have Y = x/y, with transition function given by X = 1/Y. Let

$$\omega = dX = -\frac{1}{Y^2}dY.$$

Then a canonical divisor can be constructed as

$$K = -2[0:1].$$

- (ii) Let α be a holomorphic differential on \mathbb{P}^1 . Then (α) is a canonical divisor and $\deg(\alpha) \geq 0$ since α has no poles. But the degree of a canonical divisor must be 2g 2 = -2 on \mathbb{P}^1 . This contradiction shows that a holomorphic divisor cannot exist on \mathbb{P}^1 .
- (iii) If (f) = p q, then f defines an isomorphism onto \mathbb{P}^1 forcing the genus to be zero.

NAME:

STUDENT NO:

Q-3) Give a proof the Riemann-Roch theorem on \mathbb{P}^1 using elementary complex calculus.

Solution:

Let D be a divisor on \mathbb{P}^1 . If deg D < 0, then $\ell(D) = 0$ from the definition of $\mathcal{L}(D)$. So assume deg $D \ge 0$.

Let K be a canonical divisor on \mathbb{P}^1 . We found in the previous question that $\deg K = -2$. Then $\deg(K - D) < 0$ and $\ell(K - D) = 0$.

First assume that $\deg D = 0$.

If D = 0, then $\mathcal{L}(D) \simeq \mathbb{C}$ and $\ell(D) = 1$.

If $D \neq 0$, then we can easily construct a rational function having the prescribed poles and zeros. Any two such functions are constant multiples of each other, so again $\ell(D) = 1$.

Next assume that $\deg D > 0$.

Let $D = D_n = D_0 + p_1 + \cdots + p_n$ where deg $D_0 = 0$. We claim that $\ell(D_n) = n + 1$. We prove this by induction. For n = 0, we just proved it above. Assume that the statement is true for n - 1. We have two cases to consider for the nature of p_n . If p_n occurs already with negative coefficient in D_0 , then $D_{n-1} + p_n$ can again be written as $D_0 + p_1 + \cdots + p_{n-1} + q_n$ with a different divisor D_0 of degree 0 and with some point $q_n \in \mathbb{P}^1$ which we can again denote by p_n . This bring the problem to the content of the next case.

Now assume that p_n does not appear with negative coefficient in D_{n-1} . Let its coefficient in D_{n-1} be m where $m \ge 0$. Let $f \in \mathcal{L}(D_n)$ but not in $\mathcal{L}(D_{n-1})$. Then f has a pole of order m + 1 at p_n . Let g be another such function in $\mathcal{L}(D_n)$ but not in $\mathcal{L}(D_{n-1})$.

Let z be a local coordinate centered at p_n . Then the Laurent expansion of both of these functions are of the form

$$\frac{b_m}{z^{m+1}} + \frac{b_{m-1}}{z^m} + \cdots,$$

where $b_m \neq 0$. Then there is a $\lambda \in \mathbb{C}$ such that the order of pole of $g - \lambda f$ at p_n is strictly less than m + 1, hence $g - \lambda f$ lies in $\mathcal{L}(D_{n-1})$. This shows that $\ell(D_n) = \ell(D_{n-1}) + 1$, which completes the induction.

Thus we proved that $\ell(D) = \deg(D) + 1$ on \mathbb{P}^1 with the understanding that $\ell(D) = 0$ if $\deg D < 0$.

STUDENT NO:

Q-4) Let C be a non-singular projective plane curve. Let D be a divisor on C. Choose any $p \in C$.

- (i) Show that $\mathcal{L}(D) \subset \mathcal{L}(D+p)$.
- (ii) Assuming that $\ell(D)$ is finite, show that $\ell(D+p) \leq \ell(D) + 1$.
- (iii) Show that $\ell(D)$ is finite.

Solution:

- (i) Let $f \in \mathcal{L}(D)$. Then $(f) + D \ge 0$ so it trivially follows that $(f) + D + p \ge 0$ and hence $f \in \mathcal{L}(D+p)$.
- (ii) If L(D) = L(D + p), then there is nothing to prove. Assume that there exists a function f ∈ L(D + p) but not in L(D). Let m be the coefficient of p in D. Then the order of vanishing of f at p is m + 1. As in the previous question, any two such functions are constant multiples of each other. Hence l(D + p) ≤ l(D) + 1.
- (iii) The proof of this basically follows the idea of the previous part. Examining different cases in detail we show that $\ell(D+p) \leq \ell(D)+1$, and hence $\ell(D) \leq \deg D + 1$ when $\deg D \geq 0$. There is clearly nothing to prove when $\deg D < 0$.

STUDENT NO:

Q-5) Let $C \subset \mathbb{P}^2$ be a non-singular algebraic curve. Let a line L intersect C at the distinct points p_1, p_2, p_3, p_4, p_5 . Choose a point $a \in C - \{p_1, p_2, p_3, p_4, p_5\}$. Let L_i be the line joining a to p_i , and let D_i be the divisor consisting of the points $C \cap L_i$, counting multiplicities, $i = 1, \ldots, 5$. Let $D = D_1 + \cdots + D_5 - 5a - p_1 - \cdots - p_5$. Calculate $\ell(D)$.

Solution:

From Bezout's theorem we conclude that $\deg C = 5$, and from degree-genus formula we find that the genus g of C is 6. If K is a canonical divisor, it follows from $\deg K = 2g - 2$ that $\deg K = 10$.

We find that deg D = 15 so that deg(K - D) < 0 and hence $\ell(K - D) = 0$.

Now from Riemann-Roch theorem we find that $\ell(D) = \deg D + 1 - g = 15 + 1 - 6 = 10$.