\qquad

Math 431 Algebraic Geometry - Final Exam - Solutions

1	2	3	4	TOTAL
25	25	25	25	100

Please do not write anything inside the above boxes!
Check that there are $\mathbf{4}$ questions on your booklet. Write your name on top of every page. Show your work in reasonable detail. A correct answer without proper or too much reasoning may not get any credit.

Q-1) Let

$$
\begin{aligned}
H & =k+k t^{4 \nu}(1+t)+k t^{6 \nu}(1+t)+k t^{7 \nu}(1+t)+k[[t]] t^{8 \nu} \\
H^{\prime} & =k+k t^{4 \nu}\left(1+t+t^{2}\right)+k t^{6 \nu}\left(1+t+t^{2}\right)+k t^{7 \nu}\left(1+t+t^{2}\right)+k[[t]] t^{8 \nu}
\end{aligned}
$$

where $\nu>2$. Show that these two rings are both Arf rings, have the same characters but are not isomorphic.

Solution:

These rings have the same characters which are

$$
4 \nu, 6 \nu, 7 \nu, 8 \nu+1
$$

The rings H_{1}, H_{1}^{\prime} are both identical to

$$
k+k t^{2 \nu}+k t^{3 \nu}+k[[t]] t^{4 \nu} .
$$

On the other hand there exists no substitution of the form

$$
t \rightarrow t\left(\alpha_{0}+\alpha_{1} t+\alpha_{2} t^{2}+\cdots\right)
$$

which transforms H to H^{\prime}. In fact such a transformation which maps H to H^{\prime} should map H_{1} to H_{1}^{\prime}, i.e. onto itself. Now assuming that 2ν is not divisible by the characteristic of k, the substitutions of the form (α), which transform the ring

$$
H_{1}=k+k t^{2 \nu}+k t^{3 \nu}+k[[t]] t^{4 \nu}
$$

onto itself, are of the form

$$
t \rightarrow t\left(\alpha_{0}+\alpha_{\nu} t^{\nu}+\alpha_{2 \nu} t^{2 \nu}+\alpha_{2 \nu+1} t^{2 \nu+1}+\cdots\right)
$$

none of which transforms the element

$$
t^{4 \nu}+t^{4 \nu+1}
$$

of H to an element of the same order in H^{\prime} which is of the form

$$
\xi_{0}\left(t^{4 \nu}+t^{4 \nu+1}+t^{4 \nu+2}\right)+\xi_{2}\left(t^{6 \nu}+t^{6 \nu+1}+t^{6 \nu+2}\right)+\cdots .
$$

Q-2) For an effective divisor $D \geq 0$, on a curve X, define

$$
|D|=\left\{D^{\prime} \in \operatorname{Div}(X) \mid D^{\prime} \geq 0 \text { and } D^{\prime} \sim D\right\}
$$

where $D^{\prime} \sim D$ means that there exists a rational function f on X such that $D^{\prime}=D+(f)$.
(i) Show that $|D|$ is isomorphic to \mathbb{P}^{ℓ}, where $\ell=\ell(D)-1$.
(ii) For two effective divisors $D \geq 0$ and $E \geq 0$, show that

$$
\operatorname{dim}|D|+\operatorname{dim}|E| \leq \operatorname{dim}|D+E|
$$

(iii) Prove Clifford's theorem that if D is an effective divisor such that $K-D$ is also effective, where K is the canonical divisor of X, then

$$
\ell(D) \leq \frac{1}{2} \operatorname{deg} D+1
$$

Solution:

There is a map

$$
\begin{aligned}
\phi: \mathcal{L}(D) & \rightarrow|D|, \\
f & \mapsto(f)+D .
\end{aligned}
$$

We see that $\phi(f)=\phi(g)$ if and only if $f=c g$ for some constant $c \in k$. Therefore $|D|$ is the projectivization of $\mathcal{L}(D)$. Therefore $\operatorname{dim}|D|=\ell(D)-1$.

There is a map

$$
\begin{aligned}
\psi & :|D| \times|E| \rightarrow|D+E|, \\
\left(D^{\prime}, E^{\prime}\right) & \mapsto D^{\prime}+E^{\prime} .
\end{aligned}
$$

This map is finite to one since there are only finitely many ways of writing an effective divisor, such as $H \in|D+E|$ as a sum of two effective divisors, such as $D^{\prime}+E^{\prime}$. Hence the dimension of $\psi(|D| \times|E|)$ inside $|D+E|$ is precisely $\operatorname{dim}|D|+\operatorname{dim}|E|$, and this proves the second claim. We will use this claim in the form

$$
\ell(D)+\ell(E) \leq \ell(D+E)+1
$$

Now for Clifford's theorem: Take $E=K-D$, and use the above form of the inequality together with the Riemann Roch theorem, keeping in mind that $\ell(K)=g$, the genus of X.

$$
\begin{aligned}
& \ell(D)+\ell(K-D) \leq \ell(K)+1 \\
& \ell(D)-\ell(K-D)=\operatorname{deg} D+1-g .
\end{aligned}
$$

Adding these lines side by side we get Clifford's theorem.

Q-3) Assume that the projection $\pi: \mathbb{P}^{n} \times \mathbb{P}^{m} \rightarrow \mathbb{P}^{m}$ is a closed map, i.e. it maps closed sets to closed sets (in the Zariski topology). Let $f: X \rightarrow Y$ be a morphism of projective varieties, $X \subset \mathbb{P}^{n}$, $Y \subset \mathbb{P}^{m}$. Let $\Delta(Y)=\{(y, y) \in Y \times Y\}$ be the diagonal. Show that $\Delta(Y)$ is closed in $\mathbb{P}^{m} \times \mathbb{P}^{m}$. Let $\Gamma_{f}=\{(x, f(x)) \in X \times Y\}$ be the graph. Show that Γ_{f} is closed in $\mathbb{P}^{n} \times \mathbb{P}^{m}$. Now show that $f(X)$ is closed in Y. In particular show that if X and Y are curves (smooth and irreducible), then $f(X)$ is either Y or a point.

Solution:

Let $\left[y_{0}: \cdots: y_{m}: y_{0}^{\prime}: \cdots: y_{m}^{\prime}\right]$ be the homogeneous coordinates in $\mathbb{P}^{m} \times \mathbb{P}^{m}$. Let $I_{Y} \in k\left[y_{0}, \ldots, y_{m}\right]$ be the homogenous ideal of Y. Let $I_{Y}^{\prime} \in k\left[y_{0}^{\prime}, \ldots, y_{m}^{\prime}\right]$ be the ideal consisting of all homogeneous polynomials $f\left(y_{0}^{\prime}, \ldots, y_{m}^{\prime}\right)$ where $f\left(y_{0}, \ldots, y_{m}\right) \in I_{Y}$. Finally let $J \in k\left[y_{0}, \ldots, y_{m}, y_{0}^{\prime}, \ldots, y_{m}^{\prime}\right]$ be the bihomogeneous ideal generated by elements of I_{Y}, elements of I_{Y}^{\prime} and the elements $y_{0}-$ $y_{0}^{\prime}, \ldots, y_{m}-y_{m}^{\prime}$. Then clearly $\Delta(Y)$ is the zero set of J in $\mathbb{P}^{m} \times \mathbb{P}^{m}$.

Let the morphism $\phi: X \times Y \rightarrow Y \times Y$ be defined by $\phi(x, y)=(f(x), y)$. Then $\Gamma_{f}=\phi^{-1}(\Delta(Y))$, and being the inverse image of a closed set is itself closed.

Now we have $\Gamma_{f} \subset X \times Y \subset \mathbb{P}^{n} \times \mathbb{P}^{m}$ and $\pi\left(\Gamma_{f}\right)$ is closed in \mathbb{P}^{m} by the assumption and hence is closed in $Y \in \mathbb{P}^{m}$. But $\pi\left(\Gamma_{f}\right)$ is nothing but $f(X)$.

The last claim follows from noting that the only closed irreducible subsets of a curve are the singletons and the curve itself.

Q-4) Show that every projective algebraic set can be written as the zero set of finitely many homogeneous polynomials all of the same degree.

Solution:

Let $X=Z(J)$ and let J be generated by the homogeneous polynomials $f_{1}, \ldots, f_{m} \in k\left[x_{0}, \ldots, x_{n}\right]$ of degrees d_{1}, \ldots, d_{m} respectively. Let d be an integer greater than each d_{i}. Consider the homogeneous ideal I generated by the following set of homogeneous polynomials of degree d each:

$$
\begin{gathered}
x_{0}^{d-d_{1}} f_{1}, \ldots, x_{n}^{d-d_{1}} f_{1}, \\
\ldots \\
x_{0}^{d-d_{i}} f_{i}, \ldots, x_{n}^{d-d_{i}} f_{i} \\
\ldots \\
x_{0}^{d-d_{m}} f_{m}, \ldots, x_{n}^{d-d_{m}} f_{m} .
\end{gathered}
$$

Clearly $X=Z(I)$.
Another solution is as follows: Let $d=\operatorname{lcm}\left(d_{1}, \ldots, d_{m}\right)$, and set $F_{i}=f_{i}^{d / d_{i}}$, for $i=1, \ldots, m$. Then $\operatorname{deg} F_{i}=d$ for all i, and clearly $Z(I)=Z\left(F_{1}, \ldots, F_{m}\right)$.

