\qquad

Math 431 Algebraic Geometry - Final Exam

1	2	3	4	TOTAL
25	25	25	25	100

Please do not write anything inside the above boxes!
Check that there are $\mathbf{4}$ questions on your booklet. Write your name on top of every page. Show your work in reasonable detail. A correct answer without proper or too much reasoning may not get any credit.

NAME:

STUDENT NO:

Q-1) Let

$$
\begin{aligned}
H & =k+k t^{4 \nu}(1+t)+k t^{6 \nu}(1+t)+k t^{7 \nu}(1+t)+k[[t]] t^{8 \nu} \\
H^{\prime} & =k+k t^{4 \nu}\left(1+t+t^{2}\right)+k t^{6 \nu}\left(1+t+t^{2}\right)+k t^{7 \nu}\left(1+t+t^{2}\right)+k[[t]] t^{8 \nu}
\end{aligned}
$$

where $\nu>2$. Show that these two rings are both Arf rings, have the same characters but are not isomorphic.

Solution:

Q-2) For an effective divisor $D \geq 0$, on a curve X, define

$$
|D|=\left\{D^{\prime} \in \operatorname{Div}(X) \mid D^{\prime} \geq 0 \text { and } D^{\prime} \sim D\right\}
$$

where $D^{\prime} \sim D$ means that there exists a rational function f on X such that $D^{\prime}=D+(f)$.
(i) Show that $|D|$ is isomorphic to \mathbb{P}^{ℓ}, where $\ell=\ell(D)-1$.
(ii) For two effective divisors $D \geq 0$ and $E \geq 0$, show that

$$
\operatorname{dim}|D|+\operatorname{dim}|E| \leq \operatorname{dim}|D+E|
$$

(iii) Prove Clifford's theorem that if D is an effective divisor such that $K-D$ is also effective, where K is the canonical divisor of X, then

$$
\ell(D) \leq \frac{1}{2} \operatorname{deg} D+1
$$

Solution:

Q-3) Assume that the projection $\pi: \mathbb{P}^{n} \times \mathbb{P}^{m} \rightarrow \mathbb{P}^{m}$ is a closed map, i.e. it maps closed sets to closed sets (in the Zariski topology). Let $f: X \rightarrow Y$ be a morphism of projective varieties, $X \subset \mathbb{P}^{n}$, $Y \subset \mathbb{P}^{m}$. Let $\Delta(Y)=\{(y, y) \in Y \times Y\}$ be the diagonal. Show that $\Delta(Y)$ is closed in $\mathbb{P}^{m} \times \mathbb{P}^{m}$. Let $\Gamma_{f}=\{(x, f(x)) \in X \times Y\}$ be the graph. Show that Γ_{f} is closed in $\mathbb{P}^{n} \times \mathbb{P}^{m}$. Now show that $f(X)$ is closed in Y. In particular show that if X and Y are curves (smooth and irreducible), then $f(X)$ is either Y or a point.

Solution:

NAME:

Q-4) Show that every projective algebraic set can be written as the zero set of finitely many homogeneous polynomials all of the same degree.

Solution:

