Due Date:	May 2	26, 2014	Monday,	17:30
-----------	-------	----------	---------	-------

Instructor: Ali Sinan Sertöz

STUDENT NO:

Math 431 Algebraic Geometry – Final Exam

1	2	3	4	TOTAL
25	25	25	25	100

Please do not write anything inside the above boxes!

Check that there are 4 questions on your booklet. Write your name on top of every page. Show your work in reasonable detail. A correct answer without proper or too much reasoning may not get any credit.

Q-1) Let

$$H = k + kt^{4\nu}(1+t) + kt^{6\nu}(1+t) + kt^{7\nu}(1+t) + k[[t]]t^{8\nu},$$

$$H' = k + kt^{4\nu}(1+t+t^2) + kt^{6\nu}(1+t+t^2) + kt^{7\nu}(1+t+t^2) + k[[t]]t^{8\nu}$$

where $\nu > 2$. Show that these two rings are both Arf rings, have the same characters but are not isomorphic.

Solution:

STUDENT NO:

Q-2) For an effective divisor $D \ge 0$, on a curve X, define

$$|D| = \{D' \in \operatorname{Div}(X) \mid D' \ge 0 \text{ and } D' \sim D\},\$$

where $D' \sim D$ means that there exists a rational function f on X such that D' = D + (f).

- (i) Show that |D| is isomorphic to \mathbb{P}^{ℓ} , where $\ell = \ell(D) 1$.
- (ii) For two effective divisors $D \ge 0$ and $E \ge 0$, show that

$$\dim |D| + \dim |E| \le \dim |D + E|.$$

(iii) Prove Clifford's theorem that if D is an effective divisor such that K - D is also effective, where K is the canonical divisor of X, then

$$\ell(D) \le \frac{1}{2} \deg D + 1.$$

Solution:

NAME:

NAME:

STUDENT NO:

Q-3) Assume that the projection $\pi : \mathbb{P}^n \times \mathbb{P}^m \to \mathbb{P}^m$ is a closed map, i.e. it maps closed sets to closed sets (in the Zariski topology). Let $f : X \to Y$ be a morphism of projective varieties, $X \subset \mathbb{P}^n$, $Y \subset \mathbb{P}^m$. Let $\Delta(Y) = \{(y, y) \in Y \times Y\}$ be the diagonal. Show that $\Delta(Y)$ is closed in $\mathbb{P}^m \times \mathbb{P}^m$. Let $\Gamma_f = \{(x, f(x)) \in X \times Y\}$ be the graph. Show that Γ_f is closed in $\mathbb{P}^n \times \mathbb{P}^m$. Now show that f(X) is closed in Y. In particular show that if X and Y are curves (smooth and irreducible), then f(X) is either Y or a point.

Solution:

NAME:

STUDENT NO:

Q-4) Show that every projective algebraic set can be written as the zero set of finitely many homogeneous polynomials all of the same degree.

Solution: