

Due Date: April 21, 2014 Monday

NAME:....

Ali Sinan Sertöz

STUDENT NO:.....

Math 431 Algebraic Geometry – Homework 2 – Solutions

1	2	3	4	TOTAL
50	50	-	-	100

Please do not write anything inside the above boxes!

Check that there are **2** questions on your booklet. Write your name on top of every page. Show your work in reasonable detail. A correct answer without proper or too much reasoning may not get any credit.

NAME:

STUDENT NO:

Q-1) Let G be an Arf semigroup and a < b < c be three consecutive elements in G, i.e. the only element of G in the open real interval (a, c) is b. Show that $c - b \le b - a$, i.e. the elements of G get closer. Show that this is not necessarily the case for every semigroup.

Answer:

Let the integers

$$i_0 = 0, i_1, i_2, \ldots, i_h, \ldots$$

form an Arf semigroup, where $i_n < i_{n+1}$ for every $n \ge 0$. For any $h \ge 0$, since the integers

$$i_h - i_h = 0, i_{h+1} - i_h, i_{h+2} - i_h, \dots,$$

form a semigroup, they are closed under addition. In particular we must have

$$2(i_{h+1} - i_h) \ge i_{h+2} - i_h.$$

It follows that

$$i_{h+1} - i_h \ge i_{h+2} - i_{h+1},$$

which is what we want to show.

To show that this is not always the case if G is not an Arf ring, let G be the semigroup generated by 3 and 5;

$$G = \{0, 3, 5, 6, 8, 9, 10 \dots \}.$$

Let a = 5, b = 6, c = 8. Then $c - b = 2 \leq b - a = 1$.

NAME:

STUDENT NO:

Q-2) Let $G = \{5m + 7n \mid m, n \in \mathbb{N}\}$. Show that the complement of G in \mathbb{N} is finite. Find the Frobenius number of G, i.e. the largest integer not in G. Construct *G, the Arf closure of G. Find the generators of *G.

Find the multiplicity sequence of the plane cusp $y^5 = x^7$. How does this sequence relate to the elements of *G?

Solution:

We have

$$G = \{0, 5, 7, 10, 12, 14, 15, 17, 19, 20, 21, 22, \overline{24}\},\$$

where $\overline{24}$ means 24+n for every nonnegative integer n. Then $\mathbb{N}\setminus G = \{1, 2, 3, 4, 6, 8, 9, 11, 13, 16, 18, 23\}$. Thus the Frobenius number is 23. Let G_1 be the semigroup generated by the differences $7-5, 10-5, 12-5, \ldots$. We see that

$$G_1 = \{0, 2, \overline{4}\}.$$

We know that ${}^*G = \{0, 5 + {}^*G_1\}$. But G_1 is clearly an Arf ring, so

$${}^{*}G = \{0, 5 + G_1\} = \{0, 5, 7, \overline{9}\}.$$

Therefore the generators of *G are 5, 7, 9, 11 and 13.

On the other hand if we blow up the singularity $y^5 = x^7$, we get in turn the singularities $y^5 = x^2$, $y^3 = x^2$ and finally the singularity is resolved and we get $y = x^2$. This gives the multiplicity sequence 5,2,2,1,1,... The associated ring is

$$0, 5, 5+2, 5+2+2, 5+2+2+1, 5+2+2+1+1, \ldots$$

which is precisely G.