

NAME:
STUDENT NO:

Math 431 Algebraic Geometry - Homework 2 - Solutions

1	2	3	4	TOTAL
50	50	-	-	100

Please do not write anything inside the above boxes!
Check that there are $\mathbf{2}$ questions on your booklet. Write your name on top of every page. Show your work in reasonable detail. A correct answer without proper or too much reasoning may not get any credit.

Q-1) Let G be an Arf semigroup and $a<b<c$ be three consecutive elements in G, i.e. the only element of G in the open real interval (a, c) is b. Show that $c-b \leq b-a$, i.e. the elements of G get closer. Show that this is not necessarily the case for every semigroup.

Answer:

Let the integers

$$
i_{0}=0, i_{1}, i_{2}, \ldots, i_{h}, \ldots
$$

form an Arf semigroup, where $i_{n}<i_{n+1}$ for every $n \geq 0$. For any $h \geq 0$, since the integers

$$
i_{h}-i_{h}=0, i_{h+1}-i_{h}, i_{h+2}-i_{h}, \ldots,
$$

form a semigroup, they are closed under addition. In particular we must have

$$
2\left(i_{h+1}-i_{h}\right) \geq i_{h+2}-i_{h}
$$

It follows that

$$
i_{h+1}-i_{h} \geq i_{h+2}-i_{h+1},
$$

which is what we want to show.
To show that this is not always the case if G is not an Arf ring, let G be the semigroup generated by 3 and 5;

$$
G=\{0,3,5,6,8,9,10 \ldots\}
$$

Let $a=5, b=6, c=8$. Then $c-b=2 \not \leq b-a=1$.

Q-2) Let $G=\{5 m+7 n \mid m, n \in \mathbb{N}\}$. Show that the complement of G in \mathbb{N} is finite. Find the Frobenius number of G, i.e. the largest integer not in G. Construct ${ }^{*} G$, the Arf closure of G. Find the generators of ${ }^{*} G$.
Find the multiplicity sequence of the plane cusp $y^{5}=x^{7}$. How does this sequence relate to the elements of ${ }^{*} G$?

Solution:

We have

$$
G=\{0,5,7,10,12,14,15,17,19,20,21,22, \overline{24}\}
$$

where $\overline{24}$ means $24+n$ for every nonnegative integer n. Then $\mathbb{N} \backslash G=\{1,2,3,4,6,8,9,11,13,16,18,23\}$. Thus the Frobenius number is 23 . Let G_{1} be the semigroup generated by the differences $7-5,10-$ $5,12-5, \ldots$. We see that

$$
G_{1}=\{0,2, \overline{4}\} .
$$

We know that ${ }^{*} G=\left\{0,5+{ }^{*} G_{1}\right\}$. But G_{1} is clearly an Arf ring, so

$$
{ }^{*} G=\left\{0,5+G_{1}\right\}=\{0,5,7, \overline{9}\} .
$$

Therefore the generators of ${ }^{*} G$ are 5, 7, 9, 11 and 13 .
On the other hand if we blow up the singularity $y^{5}=x^{7}$, we get in turn the singularities $y^{5}=x^{2}$, $y^{3}=x^{2}$ and finally the singularity is resolved and we get $y=x^{2}$. This gives the multiplicity sequence $5,2,2,1,1, \ldots$ The associated ring is

$$
0,5,5+2,5+2+2,5+2+2+1,5+2+2+1+1, \ldots
$$

which is precisely ${ }^{*} G$.

