

NAME:
STUDENT NO:
\qquad

Math 431 Algebraic Geometry - Homework 2

1	2	3	4	TOTAL
50	50	-	-	100

Please do not write anything inside the above boxes!
Check that there are $\mathbf{2}$ questions on your booklet. Write your name on top of every page. Show your work in reasonable detail. A correct answer without proper or too much reasoning may not get any credit.

Q-1) Let G be an Arf semigroup and $a<b<c$ be three consecutive elements in G, i.e. the only element of G in the open real interval (a, c) is b. Show that $c-b<b-a$, i.e. the elements of G get closer. Show that this is not necessarily the case for every semigroup.

Answer:

Q-2) Let $G=\{5 m+7 n \mid m, n \in \mathbb{N}\}$. Show that the complement of G in \mathbb{N} is finite. Find the Frobenius number of G, i.e. the largest integer not in G. Construct ${ }^{*} G$, the Arf closure of G. Find the generators of ${ }^{*} G$.
Find the multiplicity sequence of the plane cusp $y^{5}=x^{7}$. How does this sequence relate to the elements of ${ }^{*} G$?

Solution:

