

NAME:
STUDENT NO:

Math 431 Algebraic Geometry - Midterm Exam 1 - Solutions

1	2	3	4	TOTAL
25	25	25	25	100

Please do not write anything inside the above boxes!
Check that there are $\mathbf{4}$ questions on your booklet. Write your name on top of every page. Show your work in reasonable detail. A correct answer without proper or too much reasoning may not get any credit.

Q-1) Let $X \subset \mathbb{A}^{n}$ and $Y \subset \mathbb{A}^{m}$ be affine varieties.
(a) Show that $X \times Y \subset \mathbb{A}^{n+m}$ with its induced topology is irreducible.
(b) Show that the coordinate ring $k[X \times Y]$ of $X \times Y$ is isomorphic to $k[X] \otimes_{k} k[Y]$.
(c) Show that $X \times Y$ is a product in the category of varieties.
(d) Show that $\operatorname{dim} X \times Y=\operatorname{dim} X+\operatorname{dim} Y$.

Answer:

(a)

Suppose that $X \times Y$ is a union of two closed subsets $Z_{1} \cup Z_{2}$. Let $X_{i}=\left\{x \in X \mid x \times Y \subseteq Z_{i}\right\}$, $i=1,2$. We first show that $X=X_{1} \cup X_{2}$ and X_{1}, X_{2} are closed.

Assume that there is an $x_{0} \in X$ such that x_{0} is neither in X_{1} nor in X_{2}. Then define the sets $Y_{i}=\left\{y \in Y \mid x_{0} \times y \in Z_{i}\right\}, i=1,2$. Now $Y=Y_{1} \cup Y_{2}$, and we show that Y_{1}, Y_{2} are closed subsets of Y. Fix $i=1,2$. Let us use the notation $(x, y)=\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right)$ for coordinates in \mathbb{A}^{n+m}. Let J_{i} be the ideal in $k[y]$ generated by the polynomials of the form $f_{i}\left(x_{0}, y\right)$ for all $f_{i}(x, y)$ belonging to the ideal of Z_{i} in $k[x, y]$. Then the zero set of J_{i} is precisely Y_{i}, so Y_{i} is closed. But Y is irreducible, so $Y=Y_{1}$ or Y_{2}, which implies that x_{0} is in X_{1} or in X_{2}, which is in contradiction to the way x_{0} was chosen. So no such x_{0} can be chosen and $X=X_{1} \cup X_{2}$.

Next we show that X_{1} is closed. Let J_{1} be the ideal in $k[x]$ generated by polynomials $f\left(x, y_{0}\right)$ where $f(x, y)$ is a polynomial vanishing on Z_{1} and y_{o} is a point on Y. Then X_{1} is the zero set of J_{1} and is therefore closed. Similarly X_{2} is closed. But X being irreducible either $X=X_{1}$ or $X=X_{2}$. But this implies that either $X \times Y=Z_{1}$ or $X \times Y=Z_{2}$, showing that $X \times Y$ is irreducible.
(b)

Define a map $\phi: A(X) \otimes_{k} A(Y) \rightarrow A(X \times Y)$ as $\phi\left(\sum f_{i}(x) \otimes g_{i}(y)\right)=\sum f_{i}(x) g_{i}(y)$. This is a ring homomorphism. It is onto since $\phi\left(x_{i} \otimes y_{j}\right)=x_{i} y_{j}$ and they generate the ring $A(X \times Y)$. Now let r be the smallest integer such that there exist $F=\sum_{i=1}^{r} f_{i}(x) \otimes g_{i}(y)$ with $\phi(F)=0$. From the minimality of r, we see that the g_{i} are not in the ideal of Y, so there is a point $y_{0} \in Y$ such that not all $g_{i}\left(y_{0}\right)$ are zero. Assume without loss of generality that $g_{r}\left(y_{0}\right) \neq 0$. Then $\sum_{i=1}^{r} g_{i}\left(y_{0}\right) f_{i}(x)=0$ on X, and we have $f_{r}(x)=\sum_{i=1}^{r-1}\left[g_{i}\left(y_{0}\right) / g_{r}\left(y_{0}\right)\right] f_{i}(x)$. Then we get

$$
F=\sum_{i=1}^{r-1} f_{i} \otimes\left\{g_{i}(y)+\left[g_{i}\left(y_{0}\right) / g_{r}\left(y_{0}\right)\right] g_{r}(y)\right\}
$$

violating the minimality of r. This contradiction shows that ϕ is injective and hence is an isomorphism.
(c)

Let $\pi_{X}: X \times Y \rightarrow X$ be the projection on the first component. Let ϕ be a regular function on X. Then $\left(\pi_{X}^{*}(\phi)\right)(x, y)=\left(\phi \circ \pi_{X}\right)(x, y)=\phi(x)$ is a regular function on $X \times Y$, so π_{X} is a morphism of varieties. Similarly $\pi_{Y}: X \times Y \rightarrow Y$ is a morphism. Let Z be a variety with morphisms $p_{X}: Z \rightarrow X$ and $p_{Y}: Z \rightarrow Y$. Define $\phi Z \rightarrow X \times Y$ as $\phi(z)=\left(p_{X}(z), p_{Y}(z) \in X \times Y\right.$. We then have $\left.\pi_{X} \circ \phi\right)(z)=\pi_{X}\left(p_{X}(z), p_{Y}(z)\right)=p_{X}(z)$ and similarly $\pi_{Y} \circ \phi=p_{Y}$, making the given diagram commutative.

This also follows from the universal property of tensor products if we consider the corresponding maps on the coordinate rings.
(d)

This follows from the fact that the dimension of a variety is the Krull dimension of its coordinate ring as follows.

$$
\begin{aligned}
\operatorname{dim} X \times Y=\operatorname{dim} A(X \times Y) & =\operatorname{dim} A(X) \otimes_{k} A(Y) \\
& =\operatorname{dim} A(X)+\operatorname{dim} A(Y)=\operatorname{dim} X+\operatorname{dim} Y
\end{aligned}
$$

Q-2) Let $X \subset \mathbb{A}^{n}$ be an affine variety of dimension r. Let $H \subset \mathbb{A}^{n}$ be a hypersurface such that $X \not \subset H$. Show that every irreducible component of $X \cap H$ has dimension $r-1$. Give an example where $X \cap H$ has more than one irreducible component.

Solution:

Let Z be an irreducible component of $X \cap H$. By the Affine Dimension Theorem of Hartshorne page 48 (Proposition 7.1), $\operatorname{dim} Z \geq r+(n-1)-n=r-1$. If $\operatorname{dim} Z=r$, then Z being an irreducible closed subset of the variety X of the same dimension is equal to X. But this means that $X \cap H=X$ and hence $X \subset H$ which contradicts the choice of H. So $\operatorname{dim} Z=r-1$.

For the second part consider the curve $X \subset \mathbb{A}^{2}$ given by $y=x^{2}$ and the hyperplane, i.e. line, H given by $y=1$. Then $X \cap H=\{(1,1)\} \cup\{(-1,1)\}$, has two irreducible components.

Q-3) Let $J \subset k\left[x_{1}, \ldots, x_{n}\right]$ be an ideal generated by r elements. Show that every irreducible component of $Z(J)$ has dimension greater than or equal to $n-r$. Give an example where $Z(J)$ has more than one irreducible component.

Solution:

We show this by induction on r. Let J be generated by the non-constant polynomials f_{1}, \ldots, f_{r}. When $r=1$, the result follows from the fact that the dimension of a hypersurface is $n-1$.

Assume that each irreducible component of $Z\left(f_{1}, \ldots, f_{r-1}\right)$ has dimension $n-r+1$.
Any irreducible component Y of $Z\left(f_{1}, \ldots, f_{r}\right)$ is of the form $X \cap Z\left(f_{r}\right)$ where X is an irreducible component of $Z\left(f_{1}, \ldots, f_{r-1}\right)$. Then by the Affine Dimension Theorem of Hartshorne page 48 (Proposition 7.1), we have $\operatorname{dim} Y \geq \operatorname{dim} X+\operatorname{dim} Z\left(f_{r}\right)-n \geq(n-r+1)+(n-1)-n=n-r$, as required, where $\operatorname{dim} X \geq n-r+1$ was the induction hypothesis.

Q-4) Let $\phi: \mathbb{A}^{1} \rightarrow \mathbb{A}^{2}$ be the map defined by $\phi(t)=\left(t^{2}, t^{3}\right)$. Show that ϕ is a homeomorphism of \mathbb{A}^{1} onto the curve $X=Z\left(y^{2}-x^{3}\right)$, but is not an isomorphism in the category of algebraic sets.

Solution:

Let $\left(x_{0}, y_{0}\right)$ be a point on the curve C given by $y^{2}=x^{3}$. Since k is algebraically closed, there is $t_{0} \in k$ such that $x_{0}=t_{0}^{2}$. Then $y_{0}= \pm t_{0}^{3}$. Hence $\phi\left(t_{0}\right)=\left(x_{0}, y_{0}\right)$ if $y_{0}=t_{0}^{3}$, and $\phi\left(-t_{0}\right)=\left(x_{0}, y_{0}\right)$ if $y_{0}=-t_{0}^{3}$. This shows that ϕ is bijective. The Zariski topology on \mathbb{A}^{1} and on C declare that irreducible closed sets are points. Since ϕ and ϕ^{-1} clearly send points to points, both are continuous, making ϕ bicontinuous.

However for ϕ to be an isomorphism, ϕ^{*} on the coordinate rings must be a ring isomorphism. The coordinate ring $A(C)$ of C is isomorphic to $k[x, y] /\left(y^{2}-x^{3}\right)$ and is generated by the equivalence classes of x and y. But $\phi^{*}(x)=t^{2}$ and $\phi^{*}(y)=t^{3}$. The coordinate ring of \mathbb{A}^{1} is $k[t]$ and t is not in the range of ϕ^{*}, so ϕ^{*} is not surjective, and hence is not an isomorphism. This shows that the bicontinuous map ϕ is not an isomorphism in the category of affine varieties.

