\qquad

Math 431 Algebraic Geometry - Midterm Exam 1

1	2	3	4	TOTAL
25	25	25	25	100

Please do not write anything inside the above boxes!
Check that there are $\mathbf{4}$ questions on your booklet. Write your name on top of every page. Show your work in reasonable detail. A correct answer without proper or too much reasoning may not get any credit.

Q-1) Let $X \subset \mathbb{A}^{n}$ and $Y \subset \mathbb{A}^{m}$ be affine varieties.
(a) Show that $X \times Y \subset \mathbb{A}^{n+m}$ with its induced topology is irreducible.
(b) Show that the coordinate ring $k[X \times Y]$ of $X \times Y$ is isomorphic to $k[X] \otimes_{k} k[Y]$.
(c) Show that $X \times Y$ is a product in the category of varieties.
(d) Show that $\operatorname{dim} X \times Y=\operatorname{dim} X+\operatorname{dim} Y$.

Answer:

Q-2) Let $X \subset \mathbb{A}^{n}$ be an affine variety of dimension r. Let $H \subset \mathbb{A}^{n}$ be a hypersurface such that $X \not \subset H$. Show that every irreducible component of $X \cap H$ has dimension $r-1$. Give an example where $X \cap H$ has more than one irreducible component.

Solution:

Q-3) Let $J \subset k\left[x_{1}, \ldots, x_{n}\right]$ be an ideal generated by r elements. Show that every irreducible component of $Z(J)$ has dimension greater than or equal to $n-r$. Give an example where $Z(J)$ has more than one irreducible component.

Solution:

Q-4) Let $\phi: \mathbb{A}^{1} \rightarrow \mathbb{A}^{2}$ be the map defined by $\phi(t)=\left(t^{2}, t^{3}\right)$. Show that ϕ is a homeomorphism of \mathbb{A}^{1} onto the curve $X=Z\left(y^{2}-x^{3}\right)$, but is not an isomorphism in the category of algebraic sets.

Solution:

