

Due Date: April 21, 2014 Monday

NAME:....

Instructor: Ali Sinan Sertöz

STUDENT NO:.....

Math 431 Algebraic Geometry – Midterm Exam 2 – Solutions

1	2	3	4	TOTAL
50	50	-	-	100

Please do not write anything inside the above boxes!

Check that there are **2** questions on your booklet. Write your name on top of every page. Show your work in reasonable detail. A correct answer without proper or too much reasoning may not get any credit.

NAME:

STUDENT NO:

Q-1) Let *H* be a subring of k[[t]] which contains all formal sums of its elements. Let $W(H) = \{i_0, i_1, i_2, ...\}$ be the semigroup of orders of elements in *H*, where we have $0 = i_0 < i_1 < i_2 < \cdots$. Show that for any choice of elements $S_{i_0}, S_{i_1}, S_{i_2}, \ldots$ in *H* with $\operatorname{ord} S_{i_{\ell}} = i_{\ell}$, we have

$$H = \{\sum_{\ell=0}^{\infty} \alpha_{\ell} S_{i_{\ell}} \mid \alpha_{\ell} \in k\}.$$

Answer:

Let $S \in H$ be an arbitrary element of order $i_r \in W(H)$. Let $\alpha_i = 0$ for $i = 0, \ldots, r-1$, and set $\alpha_r = lc(S)/lc(S_{i_r})$, where lc denotes the leading coefficient, i.e. if $S = \alpha_r t^{i_r} + higher$ degree terms in t, where $\alpha_r \neq 0$, then $lc(S) = \alpha_r$. Then $S' = S - \sum_{\ell=0}^r \alpha_\ell S_{i_\ell}$ has order strictly larger than ord S. Repeating this argument with S' we obtain the result.

NAME:

Q-2) For any fixed positive integer r, choose elements $T_1, \ldots, T_r \in k[[t]]$ such that ord $T_r > 0$ and

$$T_i \in kT_{i+1} + kT_{i+1}T_{i+2} + \dots + kT_{i+1} \cdots T_{r-1} + k[[t]]T_{i+1} \cdots T_r,$$

for $i = 1, \ldots, r - 1$. Show that the ring

$$k + kT_1 + kT_1T_2 + \dots + kT_1 \cdots T_{r-1} + k[[t]]T_1 \cdots T_r$$

is an Arf ring and moreover every Arf ring H is of this form if gcd W(H) = 1.

Solution:

First we prove that if H is an Arf ring and $T \in H$ is an element of positive order, say ord T = d, then the ring k + HT is also an Arf ring. In fact let I_m be the ideal of all elements in k + HT of orders greater or equal to m, where $m \ge d$ is an integer. Any element of I_m is of the form f_nT where $f_n \in H$ is an element of order n and $n \ge m - d$. Let $f_r \in H$ be an element of order r where r = m - d. Then any element of $I_m/(f_rT)$ is of the form $(f_nT)/(f_rT) = f_n/f_r$. But since H is an Arf ring, the set of such elements forms a ring. Hence $I_m/(f_nT)$ is a ring, and k + HT is thus an Arf ring.

Applying this result repeatedly, we see that any ring of the form mentioned in the question is an Arf ring since the first ring k[[t]] is trivially an Arf ring.

To show that any Arf ring H, where gcdW(H) = 1, is of this form, simply observe that for any h, $[I_h]$ is an Arf ring and $H = k + [I_h]T$ where $T \in H$ is an element of order h. Now repeating this process for the Arf ring $[I_h]$ and continuing we arrive eventually at a ring of the form mentioned in the question.