
Final Exam for Math 431 Due Date: 20 May 2022
Solution Key

1) In an appendix to Introduction to Algebraic Curves, Griffiths sketches a
proof of the following statement.

If C is a compact complex Riemann surface, then there exists an
immersion of C into P2 such that f(C) is an algebraic curve with
at most double points as singularities.

Since he uses this result for his development of the theory, he has to prove
this using elementary methods.

Prove this result now using whatever we learned so far about Riemann sur-
faces and algebraic geometry.

Sketch of Solution: We showed that if D is a divisor of C with degD ≥
2g + 1, where g is the genus of C, then a basis of L(D) gives an immersion
of C into some Pn.

Let P be a point in Pn not lying on any tangent or secan line of C. Then
a projection from P to a linear subspace Pn−1 will embed C into Pn−1. Re-
peating this we end up in P3. Here the set of all secants of C may fill all of
P3. However we can still choose a ’nice’ point Q in P3 such that projection
from Q onto P2 will send C to a plane curve with only double points. Details
of how to choose this point Q are given in Hartshorne’s Algebraic Geometry
on pages 309-314. Any reasonable summary is accepted.



2) Let C be a smooth cubic curve in P2, the ground field being C. For any
p, q ∈ C, let L be the line through p and q when p ̸= q, and be the tangent
line to C at p when p = q. By Bezout’s theorem we have L · C = p + q + r
for some r ∈ C. This defines a map ϕ : C × C → C as ϕ(p, q) = r, where r
is defined as above. Fix a point p0 ∈ C. Define p⊕ q for any p, q ∈ C as

p⊕ q = ϕ(p0, ϕ(p, q)).

Show that:

(i) p⊕ q = q ⊕ p for any p, q ∈ C

(ii) p0 ⊕ p = p for any p ∈ C.

(iii) For every p ∈ C there exists a q ∈ C such that p⊕ q = p0.

(iv) p⊕ (q ⊕ r) = (p⊕ q)⊕ r for any p, q, r ∈ C.

Thus C is an abelian group under this operation.

Solution: First observe that by definition ϕ(p, q) = ϕ(q, r). Hence

p⊕ q = ϕ(p0, ϕ(p, q)) = ϕ(p0, ϕ(q, p)) = q ⊕ p.

For the second part observe again by definition that p0, p and ϕ(p0, p) are on
the same line. Thus

p0 ⊕ p = ϕ(p0, ϕ(p0, p)) = p.

For the third part let L0 be the tangent line to C at p0, and let q0 be the
third point where L0 intersects C. For any p ∈ C let ϕ(p, q0) = q. This
means that p, q0, q are on the same line, so ϕ(p, q) = q0. Now we have

p⊕ q = ϕ(p0, ϕ(p, q)) = ϕ(p0, q0) = p0.

The associativity property takes a bit of calculation to show. Here we go!

Given p, q, r ∈ C.
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Let L1 be the line through p and q.
L1 · C = p+ q + s′, where s′ = ϕ(p, q).

Let M1 be the line through p0 and s′.
M1 · C = p0 + s′ + s, where s = ϕ(p0, s

′) = ϕ(p0, ϕ(p, q)) = p⊕ q.

Let L2 be the line through s and r.
L2 · C = s+ r + t′, where t′ = ϕ(s, r).
Then by definition (p⊕ q)⊕ r = ϕ(p0, t

′). ♠

Now let M2 be the line through q and r.
M2 · C = q + r + u2, where u′ = ϕ(q, r).
Let L3 be the line through p0 and u′.
L3 · C = p0 + u′ + u, where u = ϕ(p0, u

′).

Let M3 be the line through p and u.
M3 · C = p+ u+ t′′, where t′′ = ϕ(p, u).
Then by definition p⊕ (q ⊕ r) = ϕ(p0, t

′′). ♠

So now it suffices to show that t′ = t′′.

Let C ′ = L1L2L3 and C ′′ = M1M2M3

C · C ′ = C · L1 + C · L2 + C · L3 = p+ q + s′ + s+ r + t′ + p0 + u′ + u,
C · C ′′ = C ·M1 + C ·M2 + C ·M3 = p0 + s′ + s+ q + r + u′ + p+ u+ t′′.

At this point we need magic!

Cayley-Bacharach Theorem: Let C andD be two curves in P2 of degrees
m and n respectively, meeting atmn points. Let E be another curve of degree
m+n−3 passing through all but one point of C∩D. Then E passes through
that remaining point also.

Taking m = n = 3, we see that if two cubic curves C and C ′ intersect at 9
points and C ′′ passes through 8 of these, then it passes from the remaining
point too.

In our notation above this says that t = t′, completing the proof of associa-
tivity.
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