Midterm-2 for Math 431
Due Date: 6 May 2022 Friday

Solution Key:

1: Show, in as much detail as possible, why $\mathbb{A}^{2}-\{(0,0)\}$ is not affine. Check Internet to see why this is not as trivial as it looks!

Let $X=\mathbb{A}^{2}-\{(0,0)\}$. Any global regular function on X is of the form $\frac{f(x, y)}{g(x, y)}$, where $f, g \in k[x, y]$. Here g is allowed to vanish only at the origin if at all. The zero locus of any polynomial is of codimension 1 , so g cannot vanish only at the origin. This says that g is a nonzero constant. Then the ring of global regular functions on X is $k[x, y]$.

If X is affine, then its coordinate ring is its ring of global regular functions which is $k[x, y]$. Moreover any regular map from \mathbb{A}^{2} to X is induced by a ring morphism between their coordinate rings, both of which is $k[x, y]$. The identity homomorphism between these rings then induces the identity map from \mathbb{A}^{2} to X. But the origin is not mapped to X, giving us a contradiction. Therefore X is not affine.

Some elementary arguments can be found at:
StackExchange
Some more sophisticated arguments can be found at
mathoverflow
2: Show that the quadric surface Q given by $x y=z w$ in \mathbb{P}^{3} is birational to \mathbb{P}^{2}, but not isomorphic to \mathbb{P}^{2}.

We have shown that Q is isomorphic to $\mathbb{P}^{1} \times \mathbb{P}^{1}$ which is in turn birational to \mathbb{P}^{2}. Since Q contains lines which do not intersect, it cannot be isomorphic to \mathbb{P}^{2} where all lines intersect.

3: Show that every quadratic variety of dimension n is isomorphic to a quadratic hypersurface in \mathbb{P}^{n+1}.

Here by a quadratic variety we mean a variety of degree two. This is Exercise I. 7.8 on page 55 of Hartshorne's Algebraic Geometry. You can prove this result easily by using the results of the previous two exercises.

Moreover you can directly use a proposition which says that every irreducible projective variety X lies in a linear space of dimension $<\operatorname{dim} X+\operatorname{deg} X$. (This is proposition on page 252 of Encyclopedia of Mathematical Sciences, Algebraic Geometry 1, edited by Shafarevich and published by Springer. You can legally download a pdf copy when you are logged on Bilkent. The proof is easy and explained there in sufficient detail.) Using this proposition we see that every degree 2 variety of dimension n lies in \mathbb{P}^{m} where $m<n+2$, which is what we want to establish.

It is also known that every smooth variety X of dimension n lies in some $\mathbb{P}^{2 n+1}$. This can be easily seen to be true since the secant variety of X has dimension $\leq 2 n+1$. Thus if $X \subset \mathbb{P}^{N}$ with $N>2 n+1$, there is a point $O \in \mathbb{P}^{N}$ which does not lie on any secant or tangent of X and hence a projection from O sends X into \mathbb{P}^{N-1}.

The above proposition involving the degree is sharper when the degree of the variety is small.

