Let $f, g \in k\left[x_{0}, \ldots, x_{n}\right]$ be irreducible homogeneous polynomials. Write the Hilbert polynomial of $Z(f, g) \subset \mathbb{P}^{n}$.

Write your solutions on A4 papers and staple them together. Do not use other fancy covers!

Thank you.

Solution:

Let Y_{a} and Y_{b} are hypersurfaces in \mathbb{P}^{3} of degrees a and b respectively with $Y_{a}=Z(f)$ and $Y_{b}=Z(g)$ where f and g are homogeneous polynomials of degrees a and b. Assume that $Y=Y_{a} \cap Y_{b}$ is a complete intersection, i.e. the two hypersurfaces Y_{a} and Y_{b} have no common components.

From the proof of Proposition 7.6, on page 52, we know the Hilbert polynomials of Y_{a} and Y_{b}; for example

$$
P_{Y_{a}}(z)=\binom{z+n}{n}-\binom{z-a+n}{n} .
$$

We now consider the short exact sequence of graded S-modules

$$
0 \longrightarrow(S / f))(-b) \xrightarrow{g} S / f \longrightarrow S /(f, g) \longrightarrow 0
$$

where S is the graded polynomial ring $k\left[x_{0}, \ldots, x_{n}\right]$, the first map is multiplication by g, and the second map is the natural quotient map. Noting that S / f and $S /(f, g)$ are the projective coordinate rings of Y_{a} and Y respectively, we have from the additivity of the Hilbert function

$$
\begin{aligned}
P_{Y}(z) & =P_{Y_{a}}(z)-P_{Y_{a}}(z-b) \\
& =\binom{z+n}{n}-\binom{z-a+n}{n}-\left[\binom{z-b+n}{n}-\binom{z-b-a+n}{n}\right] .
\end{aligned}
$$

