Homework-4 for Math 431

Let $f \in k\left[x_{0}, \ldots, x_{n}\right]$ be irreducible homogeneous polynomials. Show that $\mathbb{A}^{n}-Z(f)$ is affine, i.e. isomorphic to \mathbb{A}^{n}.

Write your solutions on A4 papers and staple them together. Do not use other fancy covers!

Thank you.

Solution:

First let $H \subset \mathbb{P}^{n}$ be a hyperplane. By change of variables we can assume that $H=Z\left(x_{0}\right)$. Then $\mathbb{P}^{n}-H=U_{0} \cong \mathbb{A}^{n}$ which is affine.

Next let H be a hypersurface of degree d. The d-uple embedding ν_{d} sends H to a hyperplane H^{\prime} in \mathbb{P}^{N}, and hence $\mathbb{P}^{N}-H^{\prime}$ is affine. Since $\nu_{d}\left(\mathbb{P}^{n}-H\right)=$ $\nu_{d}\left(\mathbb{P}^{n}\right) \cap\left(\mathbb{P}^{N}-H^{\prime}\right)$, and ν_{d} is an isomorphism onto its image, $\mathbb{P}^{n}-H$ is also affine.

