\qquad

Math 503 Complex Analysis - Final Exam - Solutions

1	2	3	4	5	TOTAL
20	20	20	20	20	100

Please do not write anything inside the above boxes!
Check that there are 5 questions on your exam booklet. Write your name on top of every page. Show your work in reasonable detail. A correct answer without proper or too much reasoning may not get any credit.

Q-1) Let $\left\{f_{n}\right\}$ be a sequence of entire functions which converges to the entire function f. Assume that each f_{n} is one-to-one. Show that either f is one-to-one or constant.

Solution:

Let $a \in \mathbb{C}$ be any point. We want to show that $z \neq a$ implies that $f(z) \neq f(a)$.
Define the entire functions $h_{n}(z)=f_{n}(z)-f_{n}(a)$ and $h(z)=f(z)-f(a)$. Clearly the sequence $\left\{h_{n}\right\}$ of entire functions converges to the entire function h on the set $G_{a}=\mathbb{C} \backslash\{a\}$. By the Corollary 2.6 (to Hurwitz's Theorem on page 152) either $h \equiv 0$ or else it never vanishes on G_{a}. If $h \equiv 0$ then f is constant and is equal to $f(a)$. If f never vanishes on G_{a}, then this means that $z \neq a$ implies that $f(z) \neq f(a)$. Since this is true for all $a \in \mathbb{C}, f$ is one-to-one.
(This was Exercise 10 on page 154.)

Q-2) During the development of the product formula $\sin \pi z=\pi z \prod_{n=1}^{\infty}\left(1-\frac{z^{2}}{n^{2}}\right)$, Conway uses the identity

$$
\prod_{\substack{n=-\infty \\ n \neq 0}}^{\infty}\left(1-\frac{z}{n}\right) e^{z / n}=\prod_{n=1}^{\infty}\left(1-\frac{z^{2}}{n^{2}}\right)
$$

"... because the terms of the infinite product can be rearranged." Explain why the terms can be rearranged.

Solution:

On compact subsets of \mathbb{C}, we have $\left|1-E_{p_{n}}\left(z / a_{n}\right)\right| \leq\left(\frac{r}{\left|a_{n}\right|}\right)^{p_{n}+1}$, see bottom of page 169 for details. Here $a_{n}=n$ and $p_{n}=1$. Now use Corollary 5.6 on page 166 to conclude that the infinite product converges uniformly, i.e $\sum\left(E_{1}(z / n)-1\right)$ converges absolutely so its terms and hence the terms of the infinite product can be rearranged in any way to give the same value.

Q-3) Prove Wallis's formula: $\frac{\pi}{2}=\prod_{n=1}^{\infty} \frac{(2 n)^{2}}{(2 n-1)(2 n+1)}$.

Solution:

In the product formula for $\sin \pi z$, see the previous question, put $z=1 / 2$ and simplify.
(This was Exercise 4 on page 176.)

Q-4) Using the definition of the Gamma function $\Gamma(z)=\frac{e^{-\gamma z}}{z} \prod_{n=1}^{\infty}\left(1+\frac{z}{n}\right)^{-1} e^{z / n}$ as a meromorphic function on \mathbb{C}, derive the Gauss's formula, for $z \neq 0,-1,-2, \ldots$

$$
\Gamma(z)=\lim _{n \rightarrow \infty} \frac{n!n^{z}}{z(z+1) \cdots(z+n)} .
$$

Using Gauss's formula, derive the functional equation, for $z \neq 0,-1,-2, \ldots$

$$
\Gamma(z+1)=z \Gamma(z)
$$

Solution:

This is all on pages 177 and 178.

Q-5) Prove that $\zeta^{2}(z)=\sum_{n=1}^{\infty} \frac{d(n)}{n^{z}}$ for $\operatorname{Re} z>1$, where $d(n)$ is the number of divisors of n and

$$
\zeta(z)=\sum_{n=1}^{\infty} \frac{1}{n^{z}}, \text { for } R e z>1
$$

Solution:

Let a_{1}, \ldots, a_{k} be all the distinct divisors of n, so that $d(n)=k$. For each a_{j} define $b_{j}=n / a_{j}$. Then

$$
\begin{aligned}
\zeta^{2}(z) & =\left(\cdots++\frac{1}{a_{j}^{z}}+\cdots\right)\left(\cdots+\frac{1}{b_{j}^{z}}+\cdots\right) \\
& =\cdots+\left(\sum_{j=1}^{k} \frac{1}{a_{j}^{z} b_{j}^{z}}\right)+\cdots \\
& =\cdots+\frac{k}{n^{z}}+\cdots
\end{aligned}
$$

(This was Exercise 3 on page 194.)

