\qquad

Math 503 Complex Analysis - Exam 03

1	2	3	4	5	TOTAL
50	50	0	0	0	100

Please do not write anything inside the above boxes!
Check that there are $\mathbf{2}$ questions on your exam booklet. Write your name on top of every page. Show your work in reasonable detail. A correct answer without proper or too much reasoning may not get any credit.

Q-1) On page 309 we have:

$$
\begin{equation*}
\sum_{j=1}^{\infty} j\left|c_{j}\right|^{2} r^{-2 j} \leq r^{2} \text { for all } r>1 \tag{47.5}
\end{equation*}
$$

The book concludes that

$$
\sum_{j=1}^{\infty} j\left|c_{j}\right|^{2} \leq 1 \text { by letting } r \rightarrow 1
$$

Either justify the steps involved in taking this limit or obtain $\sum_{j=1}^{\infty} j\left|c_{j}\right|^{2} \leq 1$ using equation (47.5) through your own arguments

Solution:

For this limit process to make sense, we must first show that $\sum_{j=1}^{\infty} j\left|c_{j}\right|^{2}$ converges.
Let N be any positive integer and choose any r with $1<r<2$. Then letting

$$
G_{N}(r):=\sum_{j=1}^{N} j\left|c_{j}\right|^{2} r^{-2 j}
$$

we have

$$
G_{N}(r)<\sum_{j=1}^{\infty} j\left|c_{j}\right|^{2} r^{-2 j} \leq r^{2}<4
$$

As r descents to $1, G_{N}(r)$ increases and is always bounded, so has a limit, say $G_{N}<4$.
The sequence G_{N} is increasing and is bounded by 4 , so has a limit, say G.
We now want to show that $G \leq 1$.
Let

$$
F(r)=\sum_{j=1}^{\infty} j\left|c_{j}\right|^{2} r^{-2 j}, \text { for } r \geq 1
$$

By Abel's theorem we know that

$$
\lim _{r \rightarrow 1^{-}} F(r)=F(1) .
$$

Finally we can take limit of both sides in equation (47.5) as r descents to 1 to obtain $F(1)=G \leq 1$.
Another Solution: This is taken from Jeffrey S. Rosenthal's thesis of 1989, page 3.
Assume that

$$
\begin{equation*}
\sum_{j=1}^{\infty} j\left|c_{j}\right|^{2}>1 \tag{*}
\end{equation*}
$$

Then we can find a positive integer N and a real number $\alpha>0$ such that

$$
\sum_{j=1}^{N} j\left|c_{j}\right|^{2}=1+\alpha
$$

Choose $r>1$ such that

$$
r^{-2 N}>\frac{1+\alpha / 2}{1+\alpha} \text { and } r^{2}<1+\alpha / 4 .
$$

This is equivalent to choosing an r such that

$$
1<r<\min \left\{(1+\alpha / 4)^{1 / 2},\left(\frac{1+\alpha}{1+\alpha / 2}\right)^{1 /(2 N)}\right\}
$$

which is possible. Now for this r we have

$$
\begin{aligned}
\sum_{j=1}^{\infty} j\left|c_{j}\right|^{2} r^{-2 j} & \geq \sum_{j=1}^{N} j\left|c_{j}\right|^{2} r^{-2 j} \\
& \geq r^{-2 N} \sum_{j=1}^{N} j\left|c_{j}\right|^{2} \\
& >\frac{1+\alpha / 2}{1+\alpha}(1+\alpha) \\
& =1+\alpha / 2 \\
& >1+\alpha / 4 \\
& >r^{2}
\end{aligned}
$$

contradicting the result in equation (47.5). Hence our assumption (*) is wrong and

$$
\sum_{j=1}^{\infty} j\left|c_{j}\right|^{2} \leq 1
$$

For Rosenthal's thesis see the link:

```
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.55.9923
    &rep=rep1&type=pdf
```

Q-2) Let $g(z)=z+c_{0}+\frac{c_{1}}{z}+\frac{c_{2}}{z^{2}}+\cdots$, for $|z|>1$, be analytic and one-to-one. Show that if $\left|c_{1}\right|=1$, then $g(z)=z+c_{0}+\beta / z$ where $\beta \in \mathbb{C}$ with $|\beta|=1$.

Let $f(z)=z+a_{2} z^{2}+a_{3} z^{3}+\cdots$, for $|z|<1$, be analytic and one-to-one. Assume that $\left|a_{2}\right|=2$. Show that

$$
f(z)=\frac{z}{(1-\lambda z)^{2}}, \text { where }|\lambda|=1
$$

Solution:

From the inequality

$$
\sum_{j=1}^{\infty} j\left|c_{j}\right|^{2} \leq 1
$$

it follows that if $\left|c_{1}\right|=1$, then $c_{n}=0$ for $n>1$. This proves the first part.
Now apply this to the function

$$
\frac{1}{F_{1}\left(\frac{1}{z}\right)}=\frac{1}{\frac{1}{z}\left[1+\frac{1}{2} a_{2} \frac{1}{z^{2}}+\cdots\right]}=z-\frac{1}{2} a_{2} \frac{1}{z}+\cdots
$$

on page 310. Since $\left|c_{1}\right|=\left|a_{2} / 2\right|=1$, from the first part it follows that

$$
F_{1}(z)=\frac{z}{1-\lambda z^{2}}
$$

Since by definition we have

$$
F_{1}(z)=z \sqrt{\frac{f\left(z^{2}\right)}{z^{2}}}
$$

we conclude that

$$
f(z)=\frac{z}{(1-\lambda z)^{2}}, \text { where }|\lambda|=1
$$

