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Math 503 Complex Analysis — Exam 08

1 2 3 4 5 TOTAL

100 0 0 0 0 100

Please do not write anything inside the above boxes!

Check that there is 1 question on your exam booklet. Write your name on top of every page. Show your work
in reasonable detail. A correct answer without proper or too much reasoning may not get any credit.

Q-1) Define the complex Gamma function as
I'(z) = / e 't*~1dt, for Rez > 0.
0

Show that for any non-negative integer k, the k-th derivative of the Gamma function is given by
the formula

I (z) = / e " (Int)* dt, for Rez > 0.
0

Solution: We will show that I'(z) is complex differentiable for Re z > 0 using e-J arguments. For
this we need a candidate for the derivative. We anticipate that the derivative operator will commute
with the integral sign and hence that the k-th derivative of the I" function will be

/ e " '(Int)*dt for Rez >0,
0

where £ is any non-negative integer. We will first show that these integrals exist and converge uni-
formly on compact subsets of Re z > 0.

Throughout this section we fix the notation as z = z + ¢y where x and y are real and z > 0.

Lemma 1 Let k be any non-negative integer. For all Re z > 0, the integrals

/ e "7 (Int)*dt
0

exist for Re z > 0, and converge uniformly on compact subsets.

Proof: The existence of this integral is equivalent to the possibility of making the values

/ et (Int)kdt

b
/ e " (In t)kdt‘ and
0 R




arbitrarily small by convenient choices of b and R. We will show that this is possible.
For any z with Re z > 0 choose 0 < a < 1 and 3 > 1 such that
I<a<z<p.
From the usual observations that
tl_i)r(?+ t*2(Int)* =0 and tlggo tP(Int)* =0
we can choose § > 0 and R; > 0 such that

|t°‘/2(lnt)k| <1 forall 0<t<d,

and
[tP(Int)*| <1 forall t> Ry.

Then forall 0 < b < 4,
b b
/ e ' !(In t)kdt’ < / e 1" (Int)*|dt
0

b
< / “ (Int)F|dt
0

b
= /ett /D=1 (/2 (In t)k|dt
0

b
and similarly for all R > R,

/ e_ttz_l(lnt)kdt' < / e " (Int)¥|dt

R R
g/ e P (Int)¥|dt
R
_ / 12911~ (In 1) |t
R

S —tt 25 1dt

;U\¢

Now for any € > 0 choose 0 < A < ¢ and Ry > R; such that forall 0 < b < A and for all R > Ry
we have ,
/ e /2710t < ¢ and / e @1 qr < e,
0 R

which we know we can do since I'(«/2) and I'(23) exist. This proves the existence of the given
integral.

If D is a compact subset of Re z > 0, then the o and /3 of the above argument can be chosen such
that « < = < f holds for all z € D. Then the existence of A and R, depend on € and D but not on
individual z in D. This proves the uniform convergence on compact subsets. 0

Now that we know the existence of the candidate functions, we formulate what we want to prove. We
want to show that for any non-negative integer £ and for any z with Re z > 0, we have

™ (z) = / e 't* 1 (Int)"* dt.
0



We already know that this holds for £ = 0. Assume that it holds for some &£ > 0. We then want to
prove it for k£ + 1. In other words we want to show that for this fixed £ and for any z with Rez > 0,
and for any € > 0, there exists a & > 0 such that for all Az with 0 < |Az| < §, we have

‘F(k)(z + Az) —

k) o
A, (2) —/0 e_ttz_l(lnt)kﬂdt’ <€,

or equivalently, using the induction hypothesis,

oo
/ e*ttxfl
0

We expect to achieve this by choosing |Az| small. Let us agree that Az will be chosen such that
0 < |Az| < /2. Throughout our analysis we may have to make it smaller if necessary but we will
never make it larger than x/2.

t2*(Int)* — (Int)k
Az

o (hl t)k+1

dt < e. (1

We start with a technical lemma.

Lemma 2 For any z with Rez > 0, for any integer k > 0, for any t > 0, and for any Az with
0 < |Az| < x/2, we have

t2#(Int)* — (Int)*

— (Int)* <
Az (Int) -

nt|**' 22 jf o<t <1,
e 2 fe>1.

Proof: Observe that

[e.e]

ln )"
tA (Az )(Int) Z

n=0

Putting this into the given expression and simplifying, we get

t2%(Int)k — (Int)* i = (Az)*(Int)™
= (int) CURDIE e
< lnt I<:+1‘ Z |AZ| \lnt|”
Az Ilnt|"
< |(Int)*? L—————
< |(nt) \; w
k1) N 1A ]
< |(Int) \Z w
— }(ln t)kJrl’ e|Az|\lnt|
_ }(lnt)chrl’eUnt‘Az‘\.
When 0 < ¢t < 1, we have
e\lnt'AZ|| _ elnt_|Az| _ tf\Az\ < tfx/Q.
On the other hand, when ¢ > 1, we have
e|1nt‘A2‘| _ elnt‘Az‘ _ t\Az\ < tw/27
and this completes the proof. 0

We now return to the integral in equation (1), and consider it in three pieces.



Lemma 3 Fix an integer k > 0, any z with Re z = x > 0, and any Az with 0 < |Az| < x/2. For
any € > 0, there exists a number a with 0 < a < 1 such that for all c with 0 < ¢ < a, we have

(&
/ e—ttiD—l
0

Proof: Since 0 < ¢ < 1, using the fact that e~* < 1 and the previous lemma, we can write

t2%(Int)k — (Int)*

_ k1
N (Int)

dt < €/3.

t2%(Int)* — (Int)k
Az

1
/4 (In )]

Since 1
lim [t*/4(In ;)kﬂ] =0,

t—0t

for this given € > 0, there exists a real number a with 0 < a < 1 such that for all ¢ with 0 < ¢ < a,

we have
€x

1
) <

Finally we have for all ¢ with 0 < ¢ < a,

[ 45 (In )¢ — (Int)*
0 Az

_ (ln t>k+1

c 1
dt < /t<x/4)1[tf’f/4(ln¥)’“+1]dt
0

ex [€

< = [ @1t
12 /0
ex [ t/4]°
12 \ z/4|,_,

4

ex c/
12 /4
ex 1
122/4
= €/3,

as claimed. O

Next we consider the other end of the integral in equation (1).

Lemma 4 Fix an integer k > 0, any z with Re z = x > 0, and any Az with 0 < |Az| < x/2. For
any € > 0, there exists a number b > 1 such that for all v with r > b, we have

o
/ e—ttl‘—l
r

Proof: Using Lemma 2, we can write for all ¢ > 1,

t2#(Int)k — (Int)*

-0 k+1
Az (Int)

dt < €/3.

t2%(Int)* — (Int)k
Az

e*ttmfl

. (ln t)kJrl < efttxfl[txﬂ(ln t)k+1]

_ €_t/2 [e—t/2t(3z/2)—1 (1n t)k+1].

On the other hand, since
lim [eft/Zt(Sx/Z)fl(ln t)kJrl] -0

?
t—00



there exists for this given € > 0, a number b > 1 such that for all ¢ > b, we have
[6—t/2t(3x/2)—1<ln t)k-H] < 6/6.
Now for any such r > b, our integral can be estimated as follows.

t2#(Int)* — (Int)k

/TOO e tprl o — (In t)k—H dit < (e/6) /TOO 12 gy
= (¢/0) (277%)
< (¢/6) (2)
= €/3,
as claimed. .

Now we begin to consider the middle part.

Lemma 5 Let [a,b] C (0,00). For any € > 0, there exists a § > 0 such that for every t € |a,b|, and

for every Az, we have
tAz

0<|Az| < = —Int| <e

Proof: Let mq = max{|Inal,|Inb|}.

We start by the Taylor expansion of tAAZ_l — Int as a function of Az around 0.
tAz -1 0 (lIl t)n+1
—Int —— (Az)"
Az ;(n—l—l)!( 2
e n—|—1
n=1
o0 n+1

which is now a real analytic function of |Az| defined everywhere. In particular it vanishes at the
origin and is continuous there. Hence a 6 > 0 exists such that for all |[Az| < d we have

This then completes the proof. 0J

Corollary 6 Let [a,b] C (0,00) and fix any non-negative integer k. For any € > 0, there exists a
d > 0 such that for every t € [a,b], we have

t2%(Int)* — (Int)k

Az| <0 = N

_ (hl t)k—l—l

< €.

Proof: Let my = max{|Inal,|Inb|}. By the same idea as above we can choose § > 0 such that for
all 0 < |Az| < 6 we will have

k—i—n—i—l

t2%(Int)k — (Int)* = n
) Z (n+1) |Az| <€
—1

ln t k+1
Az




which completes the proof. 0
Note that by putting £ = 0 in the corollary we recover the lemma.

We have one last technical lemma for the middle part.

Lemma 7 Fix an integer k > 0, any z with Rez = x > 0, and any interval [a,b] C (0,00) with
0 <a<1<b Foranye > 0, there exists a 6 > 0 such that for all Az with 0 < |Az| < 0, we have

b
a

Proof: Choose 0 < § < (Re z)/2 such that for all ¢ € [a, b] and for all 0 < |Az| < 0 we have

t2%(Int)* — (Int)k
Az

. (111 t)k+1

dt < €/3.

€

30(x)

t2#(Int)* — (Int)*

_ 1 tk‘-‘rl
Az (nt)

<

as in corollary (6) above. Here 0 < § < (Rez)/2 is needed to assure that Re(z + Az) > 0 so that
['(z + Az) is defined. Then

t2#(Int)* — (Int)*

b b
—tyo—1 — (M @ <« —S / —tye=1 gy
/a ¢ Az (In?) 30(2) J, ©
€ e
< U dt
3r<x>/o ‘
= €/3,
as claimed. ]

We can now proceed with the derivative of the I' function.

Theorem 8 Let k be any non-negative integer. For any Re z > 0, we have

F(k)(z):/ e 't*H(Int)*dt.
0

Proof: We will prove this by induction on k. The case k£ = 0 is trivial at this point, since it describes

the Gamma function itself. Assume that the claim holds for a certain k£ > 0. We will show that the

k + 1 derivative of the Gamma function is of the required form. For this we want to show that given

any € > 0, there exists a & > 0 such that for any Az with 0 < |Az| < 4, we will have inequality (1)
t2*(Int)* — (Int)*

which is .
—tyr—1
e 't
/0 Az

For this given ¢ > 0, choose 0 < a < 1 as in Lemma 3, choose b > 1 as in Lemma 4, and choose
d > 0 as in Lemma 7. Now clearly for any Az with 0 < |A| < 4, the required inequality (1) holds,
completing the induction. 0

— (Int)*| dt < e.




