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Math 503 Complex Analysis – Exam 08
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Check that there is 1 question on your exam booklet. Write your name on top of every page. Show your work
in reasonable detail. A correct answer without proper or too much reasoning may not get any credit.

Q-1) Define the complex Gamma function as

Γ(z) =

∫ ∞

0

e−ttz−1 dt, for Re z > 0.

Show that for any non-negative integer k, the k-th derivative of the Gamma function is given by
the formula

Γ(k)(z) =

∫ ∞

0

e−ttz−1(ln t)k dt, for Re z > 0.

Solution: We will show that Γ(z) is complex differentiable for Re z > 0 using ϵ-δ arguments. For
this we need a candidate for the derivative. We anticipate that the derivative operator will commute
with the integral sign and hence that the k-th derivative of the Γ function will be∫ ∞

0

e−ttz−1(ln t)k dt for Re z > 0,

where k is any non-negative integer. We will first show that these integrals exist and converge uni-
formly on compact subsets of Re z > 0.

Throughout this section we fix the notation as z = x+ iy where x and y are real and x > 0.

Lemma 1 Let k be any non-negative integer. For all Re z > 0, the integrals∫ ∞

0

e−ttz−1(ln t)kdt

exist for Re z > 0, and converge uniformly on compact subsets.

Proof: The existence of this integral is equivalent to the possibility of making the values∣∣∣∣∫ b

0

e−ttz−1(ln t)kdt

∣∣∣∣ and
∣∣∣∣∫ ∞

R

e−ttz−1(ln t)kdt

∣∣∣∣



arbitrarily small by convenient choices of b and R. We will show that this is possible.

For any z with Re z > 0 choose 0 < α < 1 and β > 1 such that

0 < α < x < β.

From the usual observations that

lim
t→0+

tα/2(ln t)k = 0 and lim
t→∞

t−β(ln t)k = 0

we can choose δ > 0 and R1 > 0 such that∣∣tα/2(ln t)k∣∣ < 1 for all 0 < t < δ,

and ∣∣t−β(ln t)k
∣∣ < 1 for all t ≥ R1.

Then for all 0 < b < δ,∣∣∣∣∫ b

0

e−ttz−1(ln t)kdt

∣∣∣∣ ≤
∫ b

0

e−ttx−1|(ln t)k|dt

≤
∫ b

0

e−ttα−1|(ln t)k|dt

=

∫ b

0

e−tt(α/2)−1|tα/2(ln t)k|dt

≤
∫ b

0

e−tt(α/2)−1dt,

and similarly for all R ≥ R1,∣∣∣∣∫ ∞

R

e−ttz−1(ln t)kdt

∣∣∣∣ ≤
∫ ∞

R

e−ttx−1|(ln t)k|dt

≤
∫ ∞

R

e−ttβ−1|(ln t)k|dt

=

∫ ∞

R

e−tt(2β)−1|t−β(ln t)k|dt

≤
∫ ∞

R

e−tt(2β)−1dt.

Now for any ϵ > 0 choose 0 < ∆ ≤ δ and R0 ≥ R1 such that for all 0 < b < ∆ and for all R ≥ R0

we have ∫ b

0

e−tt(α/2)−1dt < ϵ and
∫ ∞

R

e−tt(2β)−1dt < ϵ,

which we know we can do since Γ(α/2) and Γ(2β) exist. This proves the existence of the given
integral.

If D is a compact subset of Re z > 0, then the α and β of the above argument can be chosen such
that α < x < β holds for all z ∈ D. Then the existence of ∆ and R0 depend on ϵ and D but not on
individual z in D. This proves the uniform convergence on compact subsets. �

Now that we know the existence of the candidate functions, we formulate what we want to prove. We
want to show that for any non-negative integer k and for any z with Re z > 0, we have

Γ(k)(z) =

∫ ∞

0

e−ttz−1(ln t)k dt.



We already know that this holds for k = 0. Assume that it holds for some k ≥ 0. We then want to
prove it for k + 1. In other words we want to show that for this fixed k and for any z with Re z > 0,
and for any ϵ > 0, there exists a δ > 0 such that for all ∆z with 0 < |∆z| < δ, we have∣∣∣∣Γ(k)(z +∆z)− Γ(k)(z)

∆z
−
∫ ∞

0

e−ttz−1(ln t)k+1dt

∣∣∣∣ < ϵ,

or equivalently, using the induction hypothesis,∫ ∞

0

e−ttx−1

∣∣∣∣t∆z(ln t)k − (ln t)k

∆z
− (ln t)k+1

∣∣∣∣ dt < ϵ. (1)

We expect to achieve this by choosing |∆z| small. Let us agree that ∆z will be chosen such that
0 < |∆z| < x/2. Throughout our analysis we may have to make it smaller if necessary but we will
never make it larger than x/2.

We start with a technical lemma.

Lemma 2 For any z with Re z > 0, for any integer k ≥ 0, for any t > 0, and for any ∆z with
0 < |∆z| < x/2, we have∣∣∣∣t∆z(ln t)k − (ln t)k

∆z
− (ln t)k+1

∣∣∣∣ ≤
{
|ln t|k+1 t−x/2 if 0 < t ≤ 1,

|ln t|k+1 tx/2 if t ≥ 1.
.

Proof: Observe that

t∆z = e(∆z)(ln t) =
∞∑
n=0

(∆z)n(ln t)n

n!
.

Putting this into the given expression and simplifying, we get∣∣∣∣t∆z(ln t)k − (ln t)k

∆z
− (ln t)k+1

∣∣∣∣ =

∣∣∣∣∣(ln t)k+1

∞∑
n=1

(∆z)n(ln t)n

(n+ 1)!

∣∣∣∣∣
≤

∣∣(ln t)k+1
∣∣ ∞∑
n=1

|∆z|n| ln t|n

(n+ 1)!

≤
∣∣(ln t)k+1

∣∣ ∞∑
n=1

|∆z|n| ln t|n

n!

≤
∣∣(ln t)k+1

∣∣ ∞∑
n=0

|∆z|n| ln t|n

n!

=
∣∣(ln t)k+1

∣∣ e|∆z| | ln t|

=
∣∣(ln t)k+1

∣∣ e| ln t|∆z||.

When 0 < t ≤ 1, we have
e| ln t|∆z|| = eln t−|∆z|

= t−|∆z| ≤ t−x/2.

On the other hand, when t ≥ 1, we have

e| ln t|∆z|| = eln t|∆z|
= t|∆z| ≤ tx/2,

and this completes the proof. �

We now return to the integral in equation (1), and consider it in three pieces.



Lemma 3 Fix an integer k ≥ 0, any z with Re z = x > 0, and any ∆z with 0 < |∆z| < x/2. For
any ϵ > 0, there exists a number a with 0 < a < 1 such that for all c with 0 < c ≤ a, we have∫ c

0

e−ttx−1

∣∣∣∣t∆z(ln t)k − (ln t)k

∆z
− (ln t)k+1

∣∣∣∣ dt < ϵ/3.

Proof: Since 0 < t < 1, using the fact that e−t < 1 and the previous lemma, we can write

e−ttx−1

∣∣∣∣t∆z(ln t)k − (ln t)k

∆z
− (ln t)k+1

∣∣∣∣ < tx−1t−x/2| ln t|k+1

= t(x/4)−1[tx/4(ln
1

t
)k+1].

Since
lim
t→0+

[tx/4(ln
1

t
)k+1] = 0,

for this given ϵ > 0, there exists a real number a with 0 < a < 1 such that for all t with 0 < t < a,
we have

[tx/4(ln
1

t
)k+1] <

ϵx

12
.

Finally we have for all c with 0 < c ≤ a,∫ c

0

e−ttx−1

∣∣∣∣t∆z(ln t)k − (ln t)k

∆z
− (ln t)k+1

∣∣∣∣ dt <

∫ c

0

t(x/4)−1[tx/4(ln
1

t
)k+1] dt

<
ϵ x

12

∫ c

0

t(x/4)−1 dt

=
ϵ x

12

(
tx/4

x/4

∣∣∣∣t=c

t=0

)

=
ϵ x

12

cx/4

x/4

<
ϵx

12

1

x/4

= ϵ/3,

as claimed. �

Next we consider the other end of the integral in equation (1).

Lemma 4 Fix an integer k ≥ 0, any z with Re z = x > 0, and any ∆z with 0 < |∆z| < x/2. For
any ϵ > 0, there exists a number b ≥ 1 such that for all r with r ≥ b, we have∫ ∞

r

e−ttx−1

∣∣∣∣t∆z(ln t)k − (ln t)k

∆z
− (ln t)k+1

∣∣∣∣ dt < ϵ/3.

Proof: Using Lemma 2, we can write for all t ≥ 1,

e−ttx−1

∣∣∣∣t∆z(ln t)k − (ln t)k

∆z
− (ln t)k+1

∣∣∣∣ < e−ttx−1[tx/2(ln t)k+1]

= e−t/2[e−t/2t(3x/2)−1(ln t)k+1].

On the other hand, since
lim
t→∞

[e−t/2t(3x/2)−1(ln t)k+1] = 0,



there exists for this given ϵ > 0, a number b ≥ 1 such that for all t ≥ b, we have

[e−t/2t(3x/2)−1(ln t)k+1] < ϵ/6.

Now for any such r ≥ b, our integral can be estimated as follows.∫ ∞

r

e−ttx−1

∣∣∣∣t∆z(ln t)k − (ln t)k

∆z
− (ln t)k+1

∣∣∣∣ dt < (ϵ/6)

∫ ∞

r

e−t/2 dt

= (ϵ/6)
(
2e−r/2

)
< (ϵ/6) (2)

= ϵ/3,

as claimed. �

Now we begin to consider the middle part.

Lemma 5 Let [a, b] ⊂ (0,∞). For any ϵ > 0, there exists a δ > 0 such that for every t ∈ [a, b], and
for every ∆z, we have

0 < |∆z| < δ =⇒
∣∣∣∣t∆z − 1

∆z
− ln t

∣∣∣∣ < ϵ.

Proof: Let m0 = max{| ln a|, | ln b|}.

We start by the Taylor expansion of t∆z−1
∆z

− ln t as a function of ∆z around 0.∣∣∣∣t∆z − 1

∆z
− ln t

∣∣∣∣ =

∣∣∣∣∣
∞∑
n=1

(ln t)n+1

(n+ 1)!
(∆z)n

∣∣∣∣∣
≤

∞∑
n=1

| ln t|n+1

(n+ 1)!
|∆z|n

≤
∞∑
n=1

mn+1
0

(n+ 1)!
|∆z|n

which is now a real analytic function of |∆z| defined everywhere. In particular it vanishes at the
origin and is continuous there. Hence a δ > 0 exists such that for all |∆z| < δ we have

∞∑
n=1

mn+1
0

(n+ 1)!
|∆z|n < ϵ.

This then completes the proof. �

Corollary 6 Let [a, b] ⊂ (0,∞) and fix any non-negative integer k. For any ϵ > 0, there exists a
δ > 0 such that for every t ∈ [a, b], we have

|∆z| < δ =⇒
∣∣∣∣t∆z(ln t)k − (ln t)k

∆z
− (ln t)k+1

∣∣∣∣ < ϵ.

Proof: Let m0 = max{| ln a|, | ln b|}. By the same idea as above we can choose δ > 0 such that for
all 0 < |∆z| < δ we will have∣∣∣∣t∆z(ln t)k − (ln t)k

∆z
− (ln t)k+1

∣∣∣∣ ≤
∣∣∣∣∣

∞∑
n=1

mk+n+1
0

(n+ 1)!
|∆z|n

∣∣∣∣∣ < ϵ



which completes the proof. �

Note that by putting k = 0 in the corollary we recover the lemma.

We have one last technical lemma for the middle part.

Lemma 7 Fix an integer k ≥ 0, any z with Re z = x > 0, and any interval [a, b] ⊂ (0,∞) with
0 < a < 1 < b. For any ϵ > 0, there exists a δ > 0 such that for all ∆z with 0 < |∆z| < δ, we have∫ b

a

e−ttx−1

∣∣∣∣t∆z(ln t)k − (ln t)k

∆z
− (ln t)k+1

∣∣∣∣ dt < ϵ/3.

Proof: Choose 0 < δ < (Re z)/2 such that for all t ∈ [a, b] and for all 0 < |∆z| < δ we have∣∣∣∣t∆z(ln t)k − (ln t)k

∆z
− (ln t)k+1

∣∣∣∣ < ϵ

3Γ(x)

as in corollary (6) above. Here 0 < δ < (Re z)/2 is needed to assure that Re(z + ∆z) > 0 so that
Γ(z +∆z) is defined. Then∫ b

a

e−ttx−1

∣∣∣∣t∆z(ln t)k − (ln t)k

∆z
− (ln t)k+1

∣∣∣∣ dt <
ϵ

3Γ(x)

∫ b

a

e−ttx−1dt

<
ϵ

3Γ(x)

∫ ∞

0

e−ttx−1dt

= ϵ/3,

as claimed. �

We can now proceed with the derivative of the Γ function.

Theorem 8 Let k be any non-negative integer. For any Re z > 0, we have

Γ(k)(z) =

∫ ∞

0

e−ttz−1(ln t)kdt.

Proof: We will prove this by induction on k. The case k = 0 is trivial at this point, since it describes
the Gamma function itself. Assume that the claim holds for a certain k ≥ 0. We will show that the
k + 1 derivative of the Gamma function is of the required form. For this we want to show that given
any ϵ > 0, there exists a δ > 0 such that for any ∆z with 0 < |∆z| < δ, we will have inequality (1)
which is ∫ ∞

0

e−ttx−1

∣∣∣∣t∆z(ln t)k − (ln t)k

∆z
− (ln t)k+1

∣∣∣∣ dt < ϵ.

For this given ϵ > 0, choose 0 < a < 1 as in Lemma 3, choose b > 1 as in Lemma 4, and choose
δ > 0 as in Lemma 7. Now clearly for any ∆z with 0 < |∆| < δ, the required inequality (1) holds,
completing the induction. �


